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Introduction.

SHOC (Sparse Hydrodynamic Ocean Code) is a finite difference hydrodynamic model developed
by the Environmental Modelling group at CSIRO (Commonwealth Scientific and Industrial
Research Organization) Division of Marine Research. This model is intended to be a general
purpose model applicable to scales ranging from estuaries to regional ocean domains. Outputs
from the model include three dimensional distributions of velocity, temperature, salinity, density,
passive tracers, mixing coefficients and sea level. Inputs required by the model include forcing
due to wind, atmospheric pressure gradients, surface heat and water fluxes and open boundary
conditions (e.g. tides). SHOC is based on the three dimensional equations of momentum,
continuity and conservation of heat and salt, employing the hydrostatic and Boussinesq
assumptions. The equations of motion are discretised on a finite difference stencil corresponding
to the Arakawa C grid. The model uses a curvilinear orthogonal grid in the horizontal and a choice
of fixed ‘z’ coordinates or terrain following o coordinates in the vertical. The ‘z’ vertical system
allows for wetting and drying of surface cells, useful for modelling regions such as tidal flats
where large areas are periodically dry. SHOC has a free surface and uses mode splitting to
separate the two dimensional (2D) mode from the three dimensional (3D) mode. This allows fast
moving gravity waves to be solved independently from the slower moving internal waves allowing
the 2D and 3D modes to operate on different time-steps, resulting in a considerable contribution
to computational efficiency. The model uses explicit time-stepping throughout except for the
vertical diffusion scheme which is implicit. The implicit scheme guarantees unconditional stability
in regions of high vertical resolution. A Laplacian diffusion scheme is employed in the horizontal
on geopotential surfaces. Smagorinsky mixing coefficients may be utilised in the horizontal.
SHOC can invoke several turbulence closure schemes, including k-, k-w, Mellor-Yamada 2.5,
2.0 and Csanady type parameterisations. A variety of advection schemes may be used on tracers
and 1% or 2" order can be used for momentum. There also exists a suite of radiation,
extrapolation, sponge and direct data forcing open boundary conditions. Input and output is
handled through netCDF data formatted files, with the option of submitting ascii text files for
simple time-series forcing. The netCDF format allows input of spatially and temporally varying
forcing and initialization data in a grid and time-step independent manner. SHOC is capable of
performing particle tracking and may be coupled to ecological and sediment transport models.

An generous set of diagnostics are available as output from SHOC, including contributing terms
to the momentum balance, vorticity, steric height, CFL stability constraints, flushing times, mixed
layer depth, turbulent mixing lengths, mean currents and fluxes of tracers.

SHOC uses a sparse coordinate system which maps all cells in the grid into a 1-dimensional
vector. This process effectively eliminates all land from the domain representation in computer
memory. Arbitrary domain composition can be efficiently performed, allowing SHOC to operate in
a true distributed processing environment. The sparse representation leads to increases in speed
and simplified housekeeping allow techniques such as distributed process, 2-way nesting and
hybrid physics to be performed with no overhead.

SHOC is written in C and evolved during 2002 from the hydrodynamic model MECO.
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1. Model Discretisation

The equations of motion in SHOC are solved on an Arakawa C grid (Arakawa and Lamb, 1977),
where velocity in the x direction (u;), y direction (u,) and tracers / elevation occupy different
positions in the grid (Figure 1.1). Tracers, vertical velocity, mixing coefficients and elevation
occupy the cell centers, u; velocities occupy the left faces and u, velocities are located on the
back faces.

Figure 1.1 : Arakawa C Grid Configuration.
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A Front (1), k1) Layer k+1
face j+1
Left [face i Right| face i+1
n(,j),tracers tracer,K,,V,
Ui,k ® B uy(i+1,k) us(ik) M ® B U (i+1,j.k)
cell(i,j)

+ Back + Layer k

face | ;
Ua(i,j,k) w(i,j,K)

Horizontal Plane Vertical Plane

The horizontal finite difference mesh employed in SHOC is orthogonal curvilinear (e.g. Eringen,
1962). This means that the grid lines are not required to be straight, but may curve provided they
intersect in a (nearly) orthogonal manner. This type of grid allows the spatial resolution over a
domain to vary and is extremely useful in placing higher resolution in areas where it is needed
and lower resolution where it is not, resulting in increased computational efficiency from fewer
grid cells to process and improved memory usage. The horizontal coordinates in the orthogonal
curvilinear coordinate system may be written as (§1, &) and the vertical coordinate as z. Metric
coefficients h; and h, are defined such that a distance increment ds satisfies:

ds=h’dé? + h2dé? 11

The grid arrangement for a square domain, including boundaries, is illustrated in Figure 1.2. The
indexing of the grid in SHOC ranges in the &; direction from 0 to ncel-1, and an extra face exists
at ncel to accommodate the u; velocity on the boundary (only non-zero for open boundaries).
This means that the array size in the &; direction is ncel+1 = nfel. The same holds in the &,
direction, with the grid size being nfe2.

The vertical coordinates system may either be ‘z’, where layers occur at fixed distances from a
datum, or o (Phillips, 1957) where the layers are scaled to the depth via:

g=2"1

= 1.2
H+np

where z is the corresponding ‘z’ coordinate, n is the surface elevation and H is the water depth.
These vertical coordinate systems are illustrated in Figure 1.3. Note that z=0 in the ‘z’ system
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corresponds to the bottom-most layer. The sigma system allows better resolution in the bottom
boundary layers over variable topography but suffers truncation error in the pressure term when
bathymetric gradients become large (Mellor et al 1994, 1998). The sigma system also requires a

minimum depth at the coast where the layers converge.

Figure 1.2 : Grid Arrangement in SHOC (u=u4, v=u,)
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Figure 1.3 : Vertical coordinate systems
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2. Model Equations.
2.1 Basic Equations

The equations of motion are transformed for curvilinear coordinates using Eqn. 1.1 and for the
sigma system using 1.2, resulting in equations similar to those described in Blumberg and Herring
(1987). The equations used in the ‘Z’ model are presented here; the o model follows the
formulation of Blumberg and Herring (1987) and is not repeated here. All variables used in the
equations of motion are listed below.

Table 2.1 : Model Variables
n Surface elevation (m)
™ Velocity in the &, direction (ms™)
U, Velocity in the &, direction (ms™)
w Velocity in the z direction (ms™)
U, Vertically integrated velocity in the &, direction (ms™)
U, Vertically integrated velocity in the &, direction (ms™)
T Temperature (°C)
S Salinity (psu)
H Bathymetry (water depth) (m)
D Total water depth (H+n) (m)
t Time (s)
g Acceleration due to gravity (ms™)
f Coriolis parameter (s™)
P Pressure (Pa)
P Density (kgm™®)
Po Reference density (kgm™)
Co Drag coefficient
Comin  Minimum drag coefficient
K von Karman constant (0.4)
Z, Bottom roughness length (m)
K, Vertical diffusivity (m?s™)

vV, Vertical viscosity (m?s™)

Vi Horizontal viscosity (m’s™)

z Vertical coordinate (m)

hy Metric in the &; direction (m)

h, Metric in the &, direction (m)

Tsx Surface wind stress in the &; direction (Nm'z)
Tsy Surface wind stress in the &, direction (Nm™)
Tox Bottom stress in the &, direction (Nm'z)

Toy Bottom stress in the &, direction (Nm'z)

Hr Surface heat flux (ms™K)

Hs Surface salt flux (ms™psu)

Wiop Vertical velocity at the surface (ms™)

Uztop Velocity at the surface in the &; direction (ms'l)
Uxop  Velocity at the surface in the &, direction (ms'l)
Whot Vertical velocity at the bottom (ms™)

U1pot Velocity at the bottom in the &; direction (ms'l)
Uspot Velocity at the bottom in the &, direction (ms'l)
1] Horizontal £, momentum diffusion term

W, Horizontal &, momentum diffusion term
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Let the three dimensional vector of velocity have the components u; in the &; direction, u, in the
&, direction and w in the z direction. Then:

0¢,
u=n— 211
u, =h, 9, 2.1.2
ot
0z
wW=— 2.1.3
ot
The horizontal momentum equations can be written as:
Continuity:
! {aulh auzhl} =0 2.1.4
hh,| 0, 98¢, | oz

Momentum &, direction:
du . 1 |o(ulhhy) Ouuh?) | awu) _ 1 9P L+ U O u’ oh,
ot hh,| 94, 9, 0z hpo& 2 hZog nn, 04

0
i+ [ auz}

2.15
Momentum &, direction:
ou, 12 {a(uluzhg) +a(ughlhz)}ra(wuz) S L P e u’ oh, +u_22
ot hh; 0& &, 0z h,p 0¢, hh, 0§, h; 9,
ou
+ 2
vt o v. 2k
2.1.6
Tracers:

o , 1 [aThy) , owTh) |, owT) _ 1 [ h\, T , 0 by oT a[
ERETANE d¢, 9z hh,|a& h "8& 9&,h, "o, | oz
2.1.7

Equation 2.1.7 is valid for temperature, salinity and any contaminants included. The vertical
velocity is obtained from Eqn. 2.1.4.

2.2 Approximations
SHOC employs the hydrostatic approximation to simplify the vertical equation of motion. This
relies on the fact that vertical accelerations in the ocean are generally small in comparison to the

gravity acceleration and the vertical equation of motion is reduced to the hydrostatic law, Eqgn
2.2.1.

10

k9T

0z

|
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0P = —pgoz 2.2.1

If density variations are small, the Boussinesq approximation simplifies density in the equations of
motion, essentially replacing density in the equations with a mean density except for the
buoyancy term (e.g. see Muller 1995, Gill 1982). Density is taken to be a constant when
calculating rates of change of momentum due to accelerations, but using the actual density when
calculating terms involving buoyancy. Also, it is assumed that the scale for variations of the
vertical velocity are small in comparison to the scale of vertical variations in density. The scale for
vertical variations in density is referred to as the scale height of the ocean, and is the depth at
which density would increase by a factor of e=2.718 due to the weight of overlying water. This
depth equates to approximately 200km, which is far greater than the depth of the ocean or the
scale of vertical motions, therefore the density varlatlons with depth are small; approximately 2%
from a constant reference value of 1035 kgm (Gill, 1982, p47). Assuming a constant density
allows the full continuity equation;

0
9P 4. ,ou- +,0D-u 0 222
ot
to be simplified to eqn 2.1.4, i.e. the ocean is assumed to be incompressible, where sound and
shock waves are not resolved.
The equation of motion in the &; direction may be written as:

Dul awl . 1 aP
— +[]e a)- f =—-——+HOT 2.2.3

p(
where HOT is the higher order frictional terms and the two equivalent terms on the left hand side
are derived via eqn. 2.2.2 (e.g. Gill, 1982, p74). The Boussinesq approximation allows p to be
replaced by the constant reference density, p,, simplifying egn. 2.2.3 to:

-p,fu, =- %O—P + HOT 224

0¢;

0 Du1
° Dt
2.3 Pressure Term

The hydrostatic equation, egn. 2.2.1, can be integrated from any depth z to the surface, n, to give
the pressure at the level z:

n
P=P, +g[ pdz 23.1

where now P refers to the pressure at level z and P, is the atmospheric pressure. The derivative
in the &, direction is then:

0P _ 0P, |
= j,odz 232
0¢, 551 551 A

using Leibnitz's Rule this can be expanded to:

11
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oP 0P an . tap
—=—2+gp ——+g|-——dz 233
0§, 04 0§ I o4,

where py, is the density at the surface. This is the formulation adopted in the ‘z’' version of SHOC,
however, the surface gradient is not explicitly evaluated. Rather, this term enters the pressure
balance through a summation of cell thickness above (and including) cell faces that are
completely or partially dry. This approach is adopted to cope with wetting and drying in which the
surface elevation in adjacent wet cells may be separated by many layers. This situation is
illustrated in Figure 2.1.

Figure 2.1 : Vertical Grid Section of the Surface Layers

Celli-1 Celli
I
p(hi k) i 92
kt
p(hi,k+2) dz; g
kdry
idz_upper
p(hik+1)
p(lok+1) dz; 4ry-1 | dz_lower
Uik O pi-1k) U, J ek O 7
. Ti,k
Layer k
hi lo

Where :

hi = water column containing the highest water level

lo = water column containing the lower water level

kt = layer containing the free surface of the higher level

kdry = layer above that containing the lower water level

dz_upper = distance from the lower water level to the layer above
dz_lower = distance from the lower water level to the layer below

The surface gradient for layers kt = k > kdry is discretized as:

12
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a k
90, 21 = gp(hi,k) > dz(K) 234
agl kt
and for the layer k = kdry-1 as:
6/7 kdry
90, —= Y = go(hi, k)Y dz(k) + go(hi, k)dz_ upper 2.35
1 kt

For layers k < kdry the total pressure is given by;
,0 kdry
ap, 22 j dz = go(hi, k)z d2(K) + go(hi, K)dz_upper +9 Y (9, ~ Pro,)z
651 651 kdry-1
2.3.6

In the 0 model the free surface term is explicitly calculated. Moreover, the density is decomposed
into a constant and depth varying component:

pP=p,+p($,$,,0,1) 2.37

Substituting into 2.3.2 and transforming to o coordinates (noting that 9,0, /(951 =0)

a_P = aPa
3g  of,

0

ap'

do+g—|o-"—do 2.3.8
65 gfafl gaaj

where the last term takes into account the deviation of o levels from geopotential surfaces.

2.4 Horizontal Diffusion

The horizontal diffusion terms in the momentum equations, y; and y,, may be written as (see
Apel (1987) p91-100 for derivation in Cartesian coordinates):

1[0 ) 1 oh, oh, |
Y, = —(h,r)+—(hr )}—[r —L-r,—2 2.4.1
1[ o oh, |
Y, = —(h,r,) + ( T )} { -7, — 2.4.2
where the shear stress components are:
I,,=2 [ 1 aul Uy ﬂ} 2.4.3
. h, 0¢, hlh 0¢,
S N o N A
r,,=r1,, =V, |— —= 2.4.4
12 21 h|:h2 afz hl) h agtl( )

13
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245

.. =2 U %+i%
# 7'lhh, 08 h, 08,

An option exists to invoke the Smagorinsky diffusion (Smagorinsky, 1963) for the horizontal
viscosity and diffusivity, given by:

~2 2
~ T ~
K, = chlhz[rli +é2 + rfz} 2.4.6
where T,, =7, (V,), T,, =T, (V) T, =7, /V, and cis a constant, typically c=0.1.

2.5 Boundary Conditions

The boundary conditions at the surface are:

0
oV, E(ul,uz) = (T Ty) 251

0
KZE(T’S):(HTaHs) 2.5.2

(Mellor 1996, Section 3) where expressions for Hr and Hs are given in Section 9, and

_ 6/7 + u1'(0p a_’? + u2top a_’]

Wipp = =1 253
ot h 95 h, 9,
The surface wind stress is given by:
— /
T9< - IOaCDS(Vvl2 +W22)l 2VV1 254

Iy = PaCos (VV12 + sz ) 1/2\/\/2

where p, is the air density (~1.225 kgm™), W; and W, are the wind speeds in the &; and &,
directions respectively and Cps is the surface drag coefficient. SHOC uses the drag formulation of
Large and Pond (1981) which has the form:

Coo W<W,
W -W,
Cps =4Cp +(Cp; _CDO)FV\Z W, <W <W, 255
Coy W =W,

where Cpo (~0.00114), Cp; (~0.00218), W, (~10.0 ms™) and W, (~26.0 ms™) are specified
parameters.

The boundary conditions at the bottom are:

14
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0
oV, E(Um Up) = (T 1 Tey) 2.5.6

pKZai(T, S)=0 257
z

__ Uy a_H _ Uopt a_H

Wit = 258
h 9§ h, 94,
The bottom stress is given by the quadratic friction law:
—_ 2 2\1/2
r,, = PCo(uy +uy) " u, 25.9
T, = PCp (U7 +Uu35)"?u, 2.5.10
where the drag coefficient is given by:
1 z+z, |
4
C, =max | =In(Z=2)| ,C,.. 2511
kK o

Here z denotes the distance above the sea floor; numerically this is implemented as the first grid
point above the bottom. Cpnin is @ minimum drag coefficient (typically between 0.002 and 0.003)
used when the first grid point is a long way from the bottom (i.e. for large z).

2.6 Vertically Integrated Equations

The solutions to the equations of motion contain both fast moving surface gravity waves and
slower moving internal waves. It is advantageous from a computational efficiency perspective to
separate these two types of motion, allowing the fast moving waves to be solved on a smaller
time-step. This is accomplished by vertically integrating egn. 2.1.5 and 2.1.6 to give equations for
the velocity transport (called the 2D mode or barotropic mode) which are then used via the
vertical integral of eqn. 2.1.4 to provide the surface elevation. This technique is known as mode
splitting (Simons 1974).

The vertical integration of eqn. 2.1.5 and 2.1.6 removes all vertical structure and is achieved for a
variable x as:

1 7 11
dez:— dez 2.6.1
H+n D -,

-H

X =

Eqn. 2.1.4 subject to vertical integration yields (using 2.5.3 and 2.5.8):

on, 1 {()Dulh2 .\ aDUZhl} ~0 26

at hh| 0¢ d¢,

The vertical integrals of egns. 2.1.5 and 2.1.6 give:

15
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2 oDU U ,h? Ky o
ot Dhh,| 9 of, “how 08 P 0g | D ol g,
T [
+ X —>—+ Dy,
Dptop prot '
LUfoh  UZoh, U an
"t oz 05, D at
_ 1 |oDu’hh, +aD@ ah1
Dh?h,| 3¢, of, hl o, h1h afl
2.6.3
212 kdry U
o, | L [6DU1U2h1h2+6DU2h2}:_fU1_ 1 {ap 0., an} 1749 Iap
ot Dhih| 94 of, h,0,, | 0¢, 0, | D 4,hp3 08,
T T
+—> -2 4Dy,
Dptop Dlobot ?
LUf oh UZoh, U,an
hh, 85, hZ df, D ot
__ 1 |opuuhh,  aDuPh? | u? oh |, uy oh,
DhZh |  9¢, 05, | hh, &  h: og,
2.6.4
where
U =u, -
! U 2.6.5
u, =u, -U,
Note that the vertical integral of the time derivative can be written as:
n n -
| Sz =2 [ wz-u ()2l -u(-H)2CH)
4, ot ot 4, ot ot
0
__[(H ”)U] u1top 6,7
t 2.6.6

= D% 0/7 Ula_ ultopa_n
ot ' ot ot ot
ouU on on

=D—+U,— — Uy, —

o0 ‘ot ot

Also, using Leibnitz's Rule and egn. 2.6.1 the vertical integral of the horizontal advective terms is

16
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1 jf c?ufhlh2dZ+ ]7» 6u1u2hfdZ _ 1 a(bu’hh,) . Uftopa_n Uy OH
heh, | 4, 0§ o 04 hh, 0§ h 0& h 0&

2.6.7
1 a(Duluzhlz) + ultopu2top 6/7 + ultopu2top aH
heh,  ag, h 9 h, 0
and the vertical integral of the vertical advective term:
awu 7 3
J- WU1|_ Vvtopultop Wbot ulbot 2.6.8

The term Uy,,0/77/0t in eqn. 2.6.6 combines with those on the RHS of eqn. 2.6.7 involving Uy
and uyp, to cancel the RHS of eqn. 2.6.8 via the use of eqns. 2.5.3 and 2.5.8.

The horizontal diffusion terms, D¢, and D{/, are obtained from 2.4.1 and 2.4.2 where u, is
substituted with DU; and u, with DU,. Specifically:

D, = 1 0 [2vh, o(DV,) , 2v,DU, ahl}

hh,o&| h  0& h 95,

K 2
L, L 0 |Vh o (Duljwhhzi(ouzj
hh, 05, h, 05, h 05, h,

_ 2.6.9
L Vo oh|h 0 {Dul}_&i(DUzJ
hh, 06, | h, 05, h ) h 06 ( h,
Vv, oh,[ oh, . 1 d(DU
—_'h "2 2DUl 2 4 — ( 2):|
hh, 04, | 0, h, 04,
D, = 1 9 hla(DU) V.h? 9 (Duzj
" hh, 08, v 0¢, h 05 h,
, 1 0 [24DU, oh, , 2Vh a(Duz)}
hh, s, h, 05 h, 04 26,10

V, oh,[h @ (DU) h, a(
+ —_
hh, afl_hz 05, b ) ho¢,

_ VO oy, O 16(Du1>}
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]

The last line of eqns 2.6.3 and 2.6.4 represent the advection of the fluctuating velocity and are
called the dispersion terms. Rather than evaluate these explicitly egn. 2.6.5 is used and the
fluctuating velocity is equal to the vertical average of the 3D velocity advection minus the 2D
velocity advection.
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dDuhh, | ADUUH _ dDUZhh,  ADUUN _dDUZhh, 9DU,U,h?
06, o6, 06, o6, 06, o¢,

2.6.11

The bottom stress, vertical integral of momentum advection and the pressure gradient integral are
calculated prior to the 2D mode and held constant throughout the 2D time integrations. The 2D
mode in turn provides the surface elevation for use in the 3D mode. After the 2D mode is
complete, the 3D velocities are adjusted so that their vertical integral is equal to the 2D velocities.
It is possible to execute SHOC in 2D mode only. This essentially only solves the vertically
integrated equations to provide velocity transports and surface elevation, leading to large savings
in execution time.

2.7 Stability Considerations

The mode splitting approach results in separate stability constraints for the 2D and 3D modes
governed by the fastest respective wave speeds of these modes. These conditions basically
prohibit a perturbation moving at a speed equal to the wave speed plus the maximum advective
speed from crossing one grid cell in one time-step. For the barotropic mode the Courant-
Friedrichs-Levy (CFL) stability condition is:

Aty <t i2+i2 27.1
Colh b

9

where:
Cg =2, gH +Umax 2.7.2

is the sum of the shallow water gravity wave speed plus the maximum velocity transport expected
(Umax)- It is usually good practice to reduce this time-step amount by a ‘safety factor’ of around 0.9
when setting up the model. The CFL condition for the baroclinic mode is less restrictive by virtue
of the slower speeds of the internal waves, and is given by:

NIPEIE
C | n

|
where C; = 2¢; + umax. FOr a 2 layer system where the upper layer has a thickness of H; and
density of p;, and the lower layer thickness is H, with density p,, the shallow water (A/ H;>20 and
N H»>20; A = wavelength) internal wave speed can be estimated via (Pond and Pickard, 1983,
p238):

2.7.4

c =\/g(p2—,01) H,H,
£, H,+H,

For the case where a thin upper layer (H;< A/20) overlies a deep lower layer (H,>A/2) this can be
approximated as:

c = (P, =p) gH, 275

P
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These waves are non-dispersive; deep water internal waves (A/ H;<2 and A/ H,<2) have speeds
which are dependent on the wave number hence are dispersive, i.e.

¢ = [9(p, - p) )76

k(o, + 2)
where kK =271/ is the radian wave number. Note that deep water internal wave speeds are
independent of the water depth. The internal wave speed in a continuously stratified ocean
assumes a more complicated form. Assuming that the horizontal scale is larger than the vertical
scale and wave motion is confined to the oceanic waveguide (i.e. confined between the free

surface and bottom boundaries) the internal wave can be decomposed into a set of discrete
modes. The horizontal phase speed for the case of continuous stratification with constant Brunt-

Vaisala frequency, N = (-gp;"dp, /dz)"?, in a flat bottomed ocean for long (shallow water)
waves is given by (Gill, 1982, p159):
NH _  gH dp,

C = = n=123.. 277
nir p.NIT 0z

The fastest typical internal wave speeds for the ocean are 2 to 3 ms™.
The horizontal diffusion term imposes a stability constraint that is typically quite unrestrictive,
given by:

-1
py < [1,1
&, Lh by

Note that an implicit scheme is used to solve the vertical diffusion and these schemes are
unconditionally stable. This approach overcomes stability violations that may possibly occur with
the vertical diffusion if fine vertical resolution is used. Finally the Coriolis term has an associated
stability constraint that is also unrestrictive in comparison to 2.7.1 and 2.7.3.

At

cor

1
<— 2.7.9
f

2.8 Time Stepping

SHOC uses leapfrog time stepping for momentum and Euler forward time-stepping for tracers.
The leapfrog time derivative is second order accurate and (in a simple one dimensional advection
equation) is approximated as:

t
ct=ct+ 2uAt@ 2.8.1
[)4

Solutions to the leapfrog scheme contain contributions representing physical (related to the
differential equation solved) and computational (related to the structure of the numerical equation)
modes. The latter alternates on every timestep and is an undesirable artifact of the leapfrog
scheme. This computational mode can, however, be removed by the intermittent application of
the Euler forward scheme or the use of a filter such as that of Asselin (1972):

c'=c'+050(c'™ -2c¢' +c') 2.8.2
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where v is a constant (typically 0.1).

Compatibility between the 2D and 3D modes of the model, and hence conservation, is achieved
by integrating the 2D fluxes over the 3D time steps and adjusting the 3D velocities once the 2D
step is complete so that the vertical integral of the 3D fluxes is equal the time-integrated 2D
fluxes. This ensures that the change in sea level over the 3D time-step (as computed by the 2D
equations) is equal to the total divergence of 3D fluxes above any given layer (see below). The
leapfrog method makes this summation over the 2D step difficult. Consider Figure 2.2 where the
3D mode operates on a time-step Atz and the 2D mode has a time-step At,, with Atz=Ig Ats; in this
case Ir=8. The leapfrog scheme advances any variable by 2At, using the values of the variable at
time t- At, and t according to Equation 2.8.1. This time-stepping is represented by the arrows in
Figure 2.2.

Figure 2.2 : Leapfrog Time Stepping

The 2D momentum fluxes must be integrated from time t to t+ Atz according to:

t+At,

U = 2 UM[H +7(t)]nAT 283

where U can be U, or U,, h=h, for U;, h=h; for U, and AT is a time interval. If consistency (and
thus conservation) is to be maintained between the 2D and 3D modes, then:

n
U flux = uflux = IU(t + Ats)hAtgdZ 2.8.4
-H

where u can be u; or u,. Using Egn. 2.1.4 and 2.5.3 with Leibenitz’s rule and noting 0z/0¢& = 0;

n n
6_/7 =W, —i i u1h2d2+i J'uzhldz 2.85
t hh,| 9¢, 7, os, *,

where w, is the vertical velocity through layer z (i.e. the volume change in a water column over
the time period Atz is equal to the divergence of the vertical integral of the flux above that layer,
including the contribution of vertical fluxes — the volume balance for the layer thickness). This
may be expressed as:
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7 7
[’7(t +At;) _”(t)]hth = hh,Atw, - 2 _[uthAt3dZ -9 J.uzhlAtst
651 -z a<z2 -z
” 2.8.6
= hthAtSWz -0 DJ. Gqux

with Uy, =Uu(t +At,)hAt,dz. Eqgn. 2.8.6 relates the vertical velocities to the change in sea

level, and if this is satisfied then conservation in the tracer equations is achieved. If z = H and w.
1=0 (no flow through the bottom) then Eqn. 2.8.6 becomes:

D [uflux
hh,

If Egn. 2.8.4 holds then Eqn. 2.8.7 reverts to the continuity equation for the 2D mode (Egn. 2.6.2).
It is clear that for Eqn. 2.8.4 to hold the 2D fluxes must be integrated in time such that AT=2At, on
only every 2" step of the leapfrog (i.e. the summation of fluxes takes place on only those times
depicted by the bottom sequence of arrows in Figure 2.2). This is only possible if Iz is an even
number, hence the leapfrog scheme is limited by the condition that the ratio of Ats:At, must be
even.

2.8.7

n(t+At) =n(t) -

The Euler forward time-stepping derivative (in a simple one dimensional advection equation) is
approximated as:
ac'
¢ =c' +udt— 2.8.1
0x

for some variable c. This is a first order Taylor approximation which is explicit in time since the
function dc/ 0t is evaluated at the time level t (as opposed to t+1). The Euler scheme is unstable
(Kowalik and Murty 1993, p163) and requires the presence of some diffusion to stabilize it (Rood
1987). This scheme was chosen for tracers since an array containing tracer values at the
backward time level is not required, leading to large savings in memory when many tracers are
simulated.

2.9 2D Vorticity Equation

Using the continuity equation, 2.6.2, the material derivative of the vertically integrated &; equation
can be written as (in Cartesian notation for convenience):

ou, +i[6DUf +0DU1U2}_$6_/7

o D| ox oy D ot

_oy, 1 UlaDU1+DU16U1+UlaDU2+DU2% LU.0n

o D 0X 0X oy oy D ot

29.1

_0Y, ,U,[0n 9DU, DU, ][, , dU, . 0U,

ot D|at  ox oy Yoax %oy
_0U, L, Y, Y,

o tox  °ody
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The vertical integral of the pressure gradient in the x direction may be written as (Sl@gdal and

Weber, 1996)

"~ oP oP, 0 7 d 7
—dz=D—2+gH — z+9— dz 2.9.2
_IH ox ox J ax_'[de J a)(_{pz
If the elevation is small in comparison to the water depth, egn. 2.9.2 may be written as:
~ oP oP. an o ox
—dz=D—2+gHp, —~+p H—+p, = 2.9.3
_-L 0x ox 9P g TP oy T Po oy
where x is the anomaly of potential energy (e.g. Rattray, 1982, Mertz and Wright, 1992) :
g 0 z g 0
)(:—'fdz'f,odzz—_[zpdz 2.9.4
IOO -H -H IOO -H
and @is contribution to the bottom pressure by the vertical mass distribution.
0
=3 J' odz 2.95
Po
The vertically integrated equations may then be written (using the Boussinesq approximation
2.2.4):
ey, Ty, oy, = L8 800 20K, L g
ot 0X 0X P, 0X ox o0x Dox Dp,
2.9.6
P
aUZ +U1 aUZ +U2 aUZ + fUl = —ia_a— ga_f]_a_qﬂ_ia_)(_'__l (TS’ _Tby)
ot 0X 0X P, 0y dy oy Doy Dp,
2.9.7

Taking the curl of 2.9.6 and 2.9.7 (i.e. 0(29.7)/0x—0 (29.6)/0yd) yield the 2D vorticity
equation. Noting that the relative vorticity of the depth averaged flow, { =0U,/dx—-9dU,/dy,

the LHS becomes:
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Lg= 20z sy s ] 00U, Uy, Uy g
ox| ot 0X 0X dy| ot 0X 0x
2 2
_0[U; 9u], U, 0U; 9, QU U, ) 3%, QU
Tot| ax  dy X Ox x> 0x oy oxay ox

_0U,0u, 9, 0U,du, |, 0%, U

-U Ly f—2+
dy ox  oxdy Ay dy - oy? dy A,
:%+u d[ou, au, +uzi oU, U, +(au aul)(au 2)+f(aU1+aU2)+gu2
ot Lax ax oy dy| ox ay ox oy ox oy
=20, S, S (e O T
ot ' ox oy
2938
Using the continuity equation again for the divergence term:
_0d 5 (f+4) 01 5
LHS=—+U 0 ——~—>*(—+U-[D)+ 2.9.9
ot ¢ D (6t )+ A

The RHS becomes:

0 x| 0| 1
RHS:_ a + _— — — (7. —T +
6x6y[,00 o ‘”} [ a} ax{Dpo(Sf by)}
9° oy| a9 1
~+gn+ —| == (g1
axay[,oo an w} oy a} ay[Dpo(sx bx)}
_0D" 9y Doy 1 0%y L1 07, /D 9r /D 07, /D .07, /D
ox ay oy 6x yax oxoy | p, 0X oy ox oy
- 1 . T
=J(x,D)+—curl,(=>-—=
(x.D7) ) Z(D D)
2.9.10
where the Jacobian is defined as J(A, B) = O_AO_B G_AG_B The depth averaged vorticity
ox dy 0y 0Xx
equation then becomes:
% yGeng+pu, = (”Z)( +U-DD)+J(X,D'1)+icur|Z(S—S) 2911
ot JoR D D
PRV  ADV BETA TF/H JEBAR WSC BSC
Where

PRV = Rate of change of relative vorticity (production of relative vorticity),
ADV = advection of relative vorticity,
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BETA = transport across contours of constant planetary vorticity,

TF/H = topographic vortex stretching, i.e. transport across f/H contours,

JEBAR = Joint Effect of Baroclinicity And Relief is the contribution of the mass field to vorticity
production (Mertz and Wright, 1992),

WSC = production of vorticity due to wind stress curl and the interaction of the wind stress with
the gradient of topography,

BSC = dissipation of vorticity due to bottom stress curl and the interaction of the bottom stress
with the gradient of topography.

Equation 2.9.11 provides a useful diagnostic for interpreting motion in the ocean, such that
forcing mechanisms for the development and decay of eddies or circulation may be investigated
(e.g. Middleton et al, 2001, Dippner, 1998). Equation 2.9.11 is often expressed in terms of the
barotropic streamfunction in the literature.

Note that the last line of eqn. 2.9.8 may be written:

14 U, (14 az
ot ' ox

0, 2t ey g, =2 D (14 00 B

2.9.12

since of /0t =0df /0x=0 and £ =0f /dy. Thus for a homogeneous inviscid ocean, eqn.
2.9.11 may be written:

1 d@+f)_
(f+2) ot

—-(dsU) 2.9.13

where d/dt =0/0t+U « [ is the material derivative. The continuity equation 2.6.2 may be
written in a similar form:

1dd_ 1 d@*H) __ .y 2.9.14

Ddt (7+H) dt

Subtraction of 2.9.13 from 2.9.14 to remove the divergence term yields the conservation of
potential vorticity equation (e.g. see Apel, 1987, p270-282, Gill, 1982, p232):

i(f +Zj =0 or n= f+d = constant 2.9.15
dt\ D D

where [1 is the potential vorticity.
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3. Flow of Control.
A schematic of the program flow is illustrated in Figure 3.1.

Figure 3.1 : Flow Diagram of SHOC

Model Configuration
* Read bathymetry
» Set parameters
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v
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2D mode integration —» U; velocity calculation
Velocity adjustment U, velocity calculation
w velocity calculation n calculation

i Y

Tracer calculation

v

Particle tracking

v

Density calculation

SHOC first undergoes initialisation and configuration procedures where the input file is read and
constants are initialised, arrays are allocated and initialised, forcing functions are initialised and
the grid is established. The main time loop is then entered where a scheduler will spawn routines
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at defined, but arbitrary, time intervals. One of these is the integration of the 3D mode (and also
the 2D mode since this is embedded in the 3D mode). First wind, surface pressure and surface
flux calculations are performed followed by any source or sink calculations. The turbulence
closure is then invoked providing the vertical viscosity and diffusivity parameters followed by the
solution to the 3D momentum equations. The 2D mode is then invoked, cycling many times on
the smaller time-step to provide the velocity transports and surface elevation. The bottom stress,
vertical integral of momentum advection and the pressure gradient integral are supplied from the
3D mode and held constant throughout the 2D mode loop. After the 2D mode is complete the
computed surface elevation is used in subsequent tracer and 3D mode calculations. The 3D
velocities are then adjusted so that vertical integrals are equal to 2D velocities. Vertical velocity is
then calculated via the continuity equation followed by the solution to the conservation equations
for tracers. Particle tracking is then invoked if required and finally the density is computed. The
main loop is then re-entered to wait for the scheduler to spawn the next event. When no more
events remain then memory is de-allocated and the program terminates.
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4. Open Boundary Conditions.
41 Introduction

Version 1 of SHOC contains a range of open boundary conditions (OBCs) including radiation,
extrapolation, sponge and direct data forcing methods. Open boundaries can be passive, where
any signals generated inside the domain are allowed to propagate through the open boundary
(Stevens, 1990). In practice passive open boundary conditions are usually associated with some
degree of reflection or distortion of the signal. Alternatively the open boundary may be active,
where velocity or elevation is prescribed on the open boundary and may influence the solution in
the model interior. Forcing with an elevation on the open boundary (which constitutes a clamped,
or Dirichlet condition) may not be successful since this may not account for the contribution to
boundary elevation from the response of the model interior (e.g. a resonant response of a domain
forced with synthesized tides). Also the prescription of elevation data on the boundary does not
capture the transient response of the model interior (e.g. to a time dependent wind forcing) and
often a combination of passive and active open boundary conditions is required (Blumberg and
Kantha, 1985).

The model requires that two components of velocity be prescribed on each open boundary
(normal and tangential velocities to the boundary) for both the 3D and 2D modes. Surface
elevation and the values of any tracers present are also required. The grid configuration in the
vicinity of an open boundary may use the normal velocity on the outer faces, e.g. Figure 4.1 (for a
southern boundary in this case) or the inner faces as in Figure 4.2.

Figure 4.1 : Southern Boundary Grid Configuration or Outer Stagger

Vi2
PAS
u=u;
V= Ni,1
Uio= boundary point (approximated) Ui1 0 © L1 Uis,1
Uio = interior point (calculated) Vi1
PAS
Ni,o
Uio & S O Ui+1,0
Southern N
Boundary Vio

In these cases the u, velocity corresponds to the normal velocity and the u; velocity to the
tangential velocity. The boundary configuration of Fig. 4.1 limits any error in the normal boundary
velocity to the non-linear terms only (i.e. normal velocity boundary approximations (vio) are not
used in the tangential velocity Coriolis calculation, u;;). This allows the diffusive terms to damp
any oscillatory behavior the normal velocity may develop and helps to maintain stability (Herzfeld
and Tomczak, 1997). The velocities are fully non-linear at the boundary and can be used in both
passive and active forcing capacities (for either elevation or velocity). 2D velocity open
boundaries are updated on the 2D time step. This type of stagger was used by Stevens (1990).
Note that this stagger requires an extra cell at the grid limits (northern and eastern boundaries) to
accommodate the normal velocity at these cell faces (i.e. v(i,nfe2-1) and u(nfel-1,j) respectively
in Figure 1.3).
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The inner stagger is the default configuration for POM type models. In this case normal velocity
approximated on the boundary is communicated into the interior via the tangential velocity
Coriolis term. Using the inner stagger the boundary elevation (e.g. nig) is only used in the non-
linear advective terms via the total depth, D=n-H. Therefore, if H >> n, any prescription of n at
this boundary (e.g. tidal forcing) will not adequately propagate the prescribed sea level into the
domain. If h is required to be prescribed at the boundary, then the only way to accomplish this is
via a Flather condition combined with the local solution. The Flather condition is generally
unsuccessful with the outer stagger (see Palma and Matano (2001, p120) and Palma and Matano
(1998, p1340)), however, the outer stagger may be forced directly with n without the requirement
of imposing Flather. Note that different solutions result when using the same boundary conditions
applied to identical problems with outer and inner staggers, due to the terms in the momentum
equations that are recipients of boundary approximations. The outer stagger is generally
considered more stable.

Figure 4.2 : Southern Boundary Grid Configuration for Inner Stagger
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4.2 Boundary Condition Types

The boundary conditions available are based on a variety of approaches and are listed in Table
4.1. The name and general class of condition are listed, along with a reference to the original
study if this exists. The variables the condition may be applied to are also included, where un =
normal velocity, ut = tangential velocity, n = surface elevation and T = tracers.
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Table 4.1 : SHOC Open Boundary Conditions

Condition nhame Type Reference Variable
Clamped Clamped - un,ut,n,T
Data prescription from file Clamped - un,n,T
Custom data prescription Clamped - un,n,T
Tidal synthesis Clamped Bye (1988) n
3D vertical integral for 2D Clamped - un,ut
No-gradient Extrapolation - un,ut,n,T
Linear least squares Extrapolation - un,ut,n,T
2" order polynomial Extrapolation - un,ut,n,T
Cyclic Extrapolation - un,ut,n,T
Statistical prescription Extrapolation - T
Linear Extrapolation - un,ut
Gravity wave radiation Radiation Sommerfeld (1949) un,ut,n,T
Orlanski Radiation Orlanski (1976) un,ut,n,T
Camerlengo and O’Brien Radiation Camerlengo & O’Brien (1980) un,ut,n,T
Miller and Thorpe Radiation Miller and Thorpe (1981) un,ut,n,T
Raymond and Kuo Radiation Raymond and Kuo (1984) un,ut,n,T
Flather Radiation Flather (1976) un (2d)
Upstream advection Upstream advection - T
Tidal memory Clamped / upstream advection - T
Flow relaxation Relaxation Martinsen & Engedahl (1987) un,utn,T
Sponge Sponge Israeli and Orszag (1981) un,ut

A detailed discussion of the performance of these boundary conditions is not presented here; see
Chapman (1985), Roed and Cooper (1987), Palma and Matano (1998, 2001) or Jensen (1998)
for evaluations of these conditions.

4.3 Relaxation to Forced Data

Many of the boundary conditions listed above are based on the Sommerfeld radiation condition,
which for some variable @takes the one dimensional form of:

a_¢+ca_¢:o

ot on

43.1

where c is the phase speed of disturbances at the boundary and n is the coordinate normal to the
boundary. Many of the open boundary conditions listed above differ only in their treatment of the
phase speed. Boundary data specified from a file may be combined with a radiation condition so
that the transient response of the domain is transmitted through the boundary while allowing the
boundary to respond to the prescribed forcing, i.e. the following is solved on the boundary
(Blumberg and Kantha, 1985);

99,90 9% 432
ot on T,

where n is the coordinate normal to the boundary, c is the phase speed of disturbances at the
boundary, @ is the prescribed variable and T; is the user defined time scale of relaxation to the
prescribed values. As mentioned above, this condition is only functional using the outer stagger.
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4.4 Clamped Boundary Conditions

Clamped open boundary conditions impose a specified value on the open boundary. This value
may be any value deemed appropriate and may be derived from field data, analytical calculations
or even zero values. Supported options are outlined below.

44.1 Clamped

The clamped condition requires the user to supply a single time and space independent value to
be imposed on the boundary. This type of condition corresponds to ¢c=0 in eqgn 4.3.1 and is a very
reflective condition. For elevation and velocities SHOC uses a clamped value of zero, and is
useful if there are to be zero tangential velocities on the boundary (i.e. all flow into the domain
occurs at right angles to the boundary). Tracers are clamped to a fill value specified in the
parameter file.

4.4.2 Data prescription from file

This boundary condition requires the user to supply data stored in a file (usually in netCDF
format) which is interpolated onto the open boundary. This allows boundary variables to vary
temporally and spatially. An example of the implementation of this condition may be a nested
simulation that uses output from a previous simulation of a larger domain encompassing the
nested domain.

4.4.3 Custom data prescription

Additional code may be included in SHOC which is executed by specifying the custom OBC, and
the clamped value is calculated from this additional code during the simulation. This is typically
invoked for application specific scenarios where an analytical condition is required on the open
boundary. An example of this may be a depth dependent velocity profile representing a river
discharge. This type of condition may be time and space varying.

4.4.4 Tidal synthesis for elevation

The elevation at an open boundary may be synthesized from tidal harmonics following the
formulation of Bye (1988):

n= z A cosz—nt —d,(a, sing, 0052—71 + A S sing, sinz—m)
“ T T T 441

-d, (a, cosf, cos?l_—l7I + A [, cosg, sin%l_—m)
k k

where for each tidal constituent k, A is the tidal amplitude at a given location (ic,jc), T is the tidal
period at location (ic,jc), a is the rate of modulation of tidal amplitude in cm/km, 6 is the direction
towards which the tidal amplitude is progressing in °T, B is the rate of modulation of tidal phase in
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degrees/km, and @ is the direction towards which the tidal phase is progressing in °T. The
distance from the cell (ic,jc) to the boundary cell at j along the &, axis is d; and the distance from
the cell (ic,jc) to the boundary cell at i along the &; axis is d,. The quantities a, (3, 8 and @ can be
obtained from cotidal charts which display co-phase and co-range contours for a particular
constituent. Note that this specification of the tide allows the tide to be calculated over the entire
boundary, thus alleviating the necessity to prescribe the tidal elevation at each boundary cell.
This method is, however, only applicable when there exists a linear variation of co-range or co-
phase contours over the boundary.

4.45 3D vertical integral for 2D velocity

This condition simply vertically integrates the 3D velocities to obtain the depth averaged velocity
on the open boundary and clamps the 2D open boundary velocity values to these averages. This
condition imposes a time invariant velocity field on the boundary throughout the 2D mode.

4.5 Extrapolation Conditions

Extrapolation conditions use data at cells interior to the open boundary to derive a value
applicable to the boundary. Supported extrapolation OBC's are as follows.

4.5.1 No-gradient condition

The no-gradient OBC assumes that there does not exist a gradient of the variable across the
open boundary and is sometimes referred to as a Neumann boundary condition. This condition
corresponds to setting C = oo in egn. 4.3.1 and is specified by setting the boundary value equal
to the value immediately adjacent to the boundary in the interior, i.e.

@t =g 4.5.1

where ﬁ;l is the boundary value at the forward time-step, (ﬂ;ll is the interior value for western

. 1 . . . .
and southern boundaries and ¢."; is the interior value for eastern and northern boundaries.

45.2 Linear least squares

The boundary value is specified using a linear extrapolation from the first 4 cells interior to the
boundary using a least squares method. If n=4 and the origin is assumed to be 4 cells into the

interior such that (X, &™) = (L &%), &%), B @) and (4,¢7,) fori=1:4 then:

@t =a, +5q 452
where:

dx@ -1 x> ¢
a, = i:1n i=L =l 453

n

inz LX)’

i=1 i=1

S
S
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and

3 =4 (q——Zx 45.4

453 2" order polynomial extrapolation

This method calculates the boundary value using a unique interpolating polynomial of 2" order
based on the 3 interior cells via Neville’s algorithm (Press et al 1992, p 102).

454 Cyclic

The cyclic, or periodic, OBC presumes that two opposing boundaries (e.g. north and south, or
east and west) have the same dimension and effectively sets a boundary condition such that the
domain becomes infinite in the direction of the opposing boundaries. This is accomplished by
considering a certain boundary and prescribing the values of the opposing boundary on that
boundary. Hence what goes out one end comes in the other and vice versa, i.e. the boundaries
wrap around and become cyclic. This can be useful to produce an infinite coast or a domain
surrounded by an infinite ocean.

455 Statistical prescription

The statistical prescription for tracers on open boundaries relies on defining a sub-region at the
boundary over which the tracer is sampled and some form of statistic (e.g. mean, median, n"
percentile) is calculated. The sub-region is defined on the basis of the magnitude of the normal
velocity component at the boundary. Starting at the boundary and progressing into the interior,
cells are checked until a cell is located where the difference in normal velocity between that cell
and the boundary cell becomes more than a specified threshold. The location of this cell becomes
the limit of the sub-region. The threshold is currently given as a fraction of the normal velocity at
the boundary, i.e. a cell us is located where;

lug = Ug| > |uf .ug| 455

where ug is the normal velocity at the boundary and uf is the threshold fraction. The statistic
calculated over the sub-region may be one of the following:

Last value at the limit of the sub-region (cyclic over the sub-region)
Mean value of the sub-region

Minimum value of the sub-region

Maximum value over the sub-region

Any percentile value over the subregion

The choice of uf and the sub-region statistic are typically derived on a trial and error basis to
produce smooth, apparently continuous tracer distributions near open boundaries. The statistical
prescription method is useful to prescribe unknown tracer values on the boundary for non-
conservative tracers (i.e. tracers whose values are not dominated by advection / diffusion) and
can be tailored to minimise discontinuities at the boundaries sometimes introduced by no-gradient
or clamped open boundary conditions.
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4.5.6 Linear conditions

It is possible to omit the advective and horizontal diffusive terms on the boundary and thus
linearize the boundary momentum balance. However, for normal velocities this is not particularly
useful since using the stagger depicted in Fig. 4.1 the pressure gradients for vi, will be zero as
there are no values of n, T or S beyond the boundaries. A better approach is to shift the stagger
for normal velocities one cell into the interior and linearize the normal velocity at this location,
effectively making velocity vi; the boundary cell. The velocity v, is then effectively not used in
calculation and may be set to anything, typically a no-gradient condition (unless no action is taken
for the tangential velocity, then this point is used in non-linear terms). This conforms to the inner
stagger depicted in Figure 4.2.

The non-linear terms may be further omitted for a certain number of cells interior to the open
boundary to improve stability (e.g. Kowalik and Murty (1993), p186 suggest 3 cells interior to the
boundary).

4.6 Radiation Conditions

These OBCs all use the formulation of eqn. 4.3.1 using different values of the phase speed, c.

The implementation of most of these schemes uses an implicit approach. Supported conditions
are listed below.

4.6.1 Gravity wave radiation.

This formulation uses a fixed flat bottomed barotropic shallow water wave speed as the phase
velocity, i.e:

c=.09Dg 4.6.1
where Dy is the depth at the boundary. The OBC is implemented in an implicit form such that:

+1
gt = Bt M 6.2

1+ u
where:

’u_cﬁ 4.6.3
- 6.

The solution to eqgn. 4.3.2 using the gravity wave radiation scheme in implicit form is given by:

+1 _
1+ u 1+u T,
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4.6.2 Orlanski radiation

The Orlanski radiation condition computes the phase speed of disturbances approaching the
boundary at every time-step from the distribution of the interior values near the boundary, e.g.

__dglot

= 4.6.5
Al dx

The Orlanski radiation coefficient has a theoretical reflection coefficient of zero. The form
employed by SHOC is the implicit formulation:

%+1 — %_l (1_ ,LI) + 2/'1%11

4.6.6
1+ u
with:
1 if C=1
H=<C if 0<C<1 4.6.7
0 if C<O
where:
-1 _
C= Gos ~ G 4.6.8

@111 + ;11 - Z%iZ

4.6.3 Camerlengo and O’Brien

This OBC is a modified form of the Orlanski radiation condition where only the extreme values of
the phase speed, zero or h/At, is used, so that;

%ﬂ - %tl If C > 0
g if C<o0

with C given by eqgn 4.6.8. The solution to eqn. 4.3.2 using the Orlanski or Camerlengo and
O’'Brien radiation schemes in implicit form is given by:

11 _ -
@+1 - % (1 /-1) + 2:“%11 + 24t % % 4.6.10
1+u 1+p T,

4.6.4 Miller and Thorpe

The Orlanski scheme is modified here so that time differences are evaluated using a forward
scheme and space differences with an upwind scheme (Miller and Thorpe 1981, egn 15):
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G =d - ua - d.) 6.4.11

with p=p+u+s Where:

+1 -1 -1

_ G B @-et _ G~
= , == = 6.4.12

t ¢é+2 (['éﬂ He = 111 - (['é_l He (['é:rlz - %i]i

This scheme is implemented in explicit form. The solution to eqn. 4.3.2 using Miller and Thorpe’s
scheme in explicit form is given by:

A =g - - ) + 10 BB 46.13

4.6.5 Raymond and Kuo

The Raymond and Kuo (1984) scheme calculates the phase velocity for multidimensional flows
using a projection of each coordinate direction, i.e. not just the normal component. The adaptive
approach of Marchesiello et al (2001) is implemented in SHOC. The Sommerfeld condition takes
the form:

% ca¢ c%—o

4.6.14
ot  “ox Yoy

where x and y are directions normal and tangential to the boundary respectively. The phase
speeds ¢, and c, are projections given by:

o =_%¢ dgl dx
X0t (0gl 0X)? + (dgl By)? ro1s
. = g dgl oy o
Y0t (0¢l 0X)% + (0@l By)?
This is discretised following Marchesiello et al (2001);
,1 1+r [ﬁs —ll _ry(%,J _%,1—1)] r,>0
4.6.16
1+r [(”é; Iy —1J_ry(¢3,j+1_¢3,j)] r, <0
where:
(= Db
Y AL +AG
4.6.17
Aglg,

rAo=———>>
T Mg+ A
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Ag = @t]ij - @—Li

“ " 4.6.18
Ag, = @—1,1 _¢B—2,j
Ag, = ¢B—Lj _@—Lj—l if [qu (@—1,141 - ¢B—Lj—1)] >0 4.6.19
A(”y = (dB—Lj+1 - %—1,1' if [A(q (%—L]ﬂ - %—1,1'—1)] <0
The adaptive for takes on a form similar to Eqn. 4.3.2:
90,00, %__ 9% 4.6.20

ot “ox Yoy T,

where T; = Toy if ¢ > 0 and T; = T, with ¢, = ¢, = 0 if ¢, < 0. The relaxation time scale T, >>Tj,
such that during outward phase propagation a weak relaxation exists to avoid boundary values
drifting excessively but also preventing problems of over-specification, while during inward phase
propagation stronger relaxation is applied that avoids shock issues. SHOC uses an outward
relaxation time-scale of T, = 1 year.

4.6.6 Flather Radiation

This radiation condition is based on Flather (1976), used by Flather (1988) and evaluated by
Palma and Matano (1998 and 2001). This condition combines the Sommerfeld radiation
condition, egn. 4.3.1, with a 1-dimensional continuity equation and applies the result to normal
depth averaged velocity. Mass is conserved in the interior with this scheme and transients are
allowed to propagate out of the domain with the gravity wave speed. The scheme is described by:

Ug =uo(t)ig[ns. ~77,(t)] 4621

where Uy(t) and no(t) are prescribed normal depth averaged velocity and elevation respectively
and BI =B for west/south boundaries and Bl =B- 1 for east/north boundaries (B = normal velocity
location). This formulation allows forcing such as tides to be introduced through the boundary. If
Uo(t) and no(t) = O then the condition behaves in a passive manner. This condition is most
successful using an inner stagger, e.g. Palma and Matano (2001, p120) and Palma and Matano
(1998, p1340). and Palma and Matano (1998) suggest gravity wave radiation conditions on
tangential velocity and n when using the Flather condition.

The Flather condition is not particularly useful in many situations where the user does not have
information for Uy(t) with which to force the model. In these cases, a local solution may be used
for Uy(t) (Palma and Matano (1998, p1323), following the methodology of Roed and Smedstad
(1984)). SHOC may use the linearized version of the momentum equations for the local solution.

4.7 Flow Relaxation Scheme
The flow relaxation scheme of Martinsen and Engedahl (1987) has been included to relax

boundary data to interior data. This is accomplished over a region NN cells wide (typically
NN=10) where the prognostic variables (n, ui, u, or tracers) are updated according to:
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¢=a¢s + (1-0) ¢, 4.7.1

where @sis the boundary specified value, ¢g,, are the interior variable values and a, is a
relaxation parameter given by:

a =1-tanf(i-1)/2] i=123..NN 472

Note that the flow relaxation scheme is used in conjunction with another boundary condition and
@ may be obtained from any condition in Table 4.1; whatever is specified on the boundary is
relaxed to the model integrated values over NN cells. If ¢ is equal to zero (clamped boundary
condition) then this flow relaxation scheme acts as a sponge type condition.

4.8 Upstream Advection for Tracers

The upstream advection condition may be thought of as an eqn. 4.3.1 with ¢ equal to the normal
velocity at the boundary and must be used in conjunction with another boundary condition. For a
southern boundary this may be discretized as:

A= g+ o (=) (s = ) + (s + [0~ ) 481

where @; is the tracer on the southern boundary, @s_; is the tracer one cell into the interior and ¢
is a tracer value that must be supplied via another boundary condition. Usually ¢ is supplied via
data input from file, but may be any clamped or extrapolation type condition. This value is only
used when flow is into the domain. If flow is out of the domain only the tracer values @ and @,
are used in the boundary condition.

4.9 Tidal Memory for Tracers

The tidal memory open boundary condition is supplied for tracers that experience oscillatory
behavior across the boundary, e.g. tidal forcing. When flow is directed outward across the
boundary (ebb tide in an estuary) the tracer concentrations when the tide first begins to ebb and
first begins to flood are ‘remembered’ and reapplied as the open boundary condition during the
phase of subsequent flow inward across the boundary (flood tide). Boundary value concentrations
are specified as a linear interpolation between the first and last ebb values. If the tidal excursion
during the flood becomes greater than that of the previous ebb (i.e. an extrapolation is required
from the first and last ebb values) then the last ebb concentration is used for the remainder of the
flood. (An option exists to prescribe a user supplied tracer concentration in these circumstances).
During the ebb phase an upstream advection open boundary condition is always applied. The
tidal memory boundary condition is only invoked above a certain specified depth.

4.10 Sponge Schemes

A sponge condition acts to supplement an existing velocity OBC and acts to increase friction and
thus damp any velocity perturbations near the boundary. These conditions are typically
implemented over a number of cells (typically 10) adjacent to the boundary. Friction may be
increased by linearly increasing bottom friction (Israeli and Orszag, 1981) up to 4 times the
interior value, or by increasing horizontal viscosity (to the maximum value allowed to maintain
stability).
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4.11 Tidal Harmonics

Given a latitude and longitude on the earth’s surface, SHOC can generate up to 22 tidal
amplitude and phase harmonics representing long period, diurnal and semi-diurnal tidal
oscillations. The tidal harmonics are generated from Geosat altimeter observations at 1° latitude
and 1.5° longitude resolution using ‘orthotide’ functions (Cartwright and Ray, 1990). The elevation
at latitude 6, longitude A and time t is given by:

n@,At) = zz‘ﬁ[u ™ (5, )P (1) +V ™ (6, 1)Q™ (1)] 4111

m=1 j=0

where K=1 or 2, m denotes the tidal ‘species’, Pj(m) (t) and Qfm) (t) are the ‘orthotide’ functions

and Ufm) (6,1) and Vj(m) (6,A) are the admittance parameters. Using the Eqn. 4.11.1 the

amplitude and phase for each harmonic may be derived (e.g. Cartwright and Ray, 1990,
Appendix A). The tidal elevation is then given by:

n=2z,+> H,j,cosg,t+v,-g,) 4112
n

where z, (m) is the mean sea level above a chart datum, H, (m) is the amplitude for constituent n
(spatially variable), g, (°) is the phase lag for constituent n at Greenwhich (spatially variable), g,
(°/s) is the frequency for constituent n (constant), t is the time (GMT, s) and f, and v, are nodal
corrections to correct for the moons 18.613 year precession cycle (time dependent). The nodal
corrections are supplied as yearly values from 1970 to 2030 (provided by Proudman
Oceanographic Laboratory, UK, 1990) from which the value at time t is interpolated. The tidal
phases and nodal corrections to the phase are relative to Greenwhich, hence the time used in
nodal interpolations and in 4.11.2 must be converted from local time to GMT.

The tidal constituents used to construct the tide are given in Table 4.2,

Table 4.2 : Tidal Harmonics used for Tide Construction

Name Doodson Number Frequency (°/hr)
Q1 135.655 13.40
01 145.555 13.94
P1 163.555 14.96
S1 164.556 15.00
K1 165.555 15.04

2N2 235.755 27.90
MU2 237.555 27.97
N2 245.655 28.44
NU2 247.455 28.51
M2 255.555 28.98
L2 265.455 29.53
T2 272.556 29.96
S2 273.555 30.00
K2 275.555 30.08
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5. Advection Schemes.
51 Advection Scheme Types

SHOC employs a variety of advection schemes for tracers and uses a 1* order upwind, 2" order
centered or Van Leer's higher order upwind scheme for momentum. The advection schemes
available for tracers are:

1* order upwind

2" order centered
QUICKEST

4" order

Van Leer’s scheme
Semi-Lagrangian scheme

oakwnNE

All schemes have been implemented on the curvilinear coordinate system for non-uniform grids,
and are solved using a non-splitting method (as opposed to a splitting, or fractional step method,;
see Yanenko, 1971). All schemes are implemented in the flux form of the advection equation, i.e.
solution of the following is sought:

OT , o(uT) L 0(VT) , o(wT) _ 0
ot 0x oy 0z

511

The higher order schemes have been rendered monotonic by the optional application of the
ULTIMATE limiter (Leonard, 1991). The ULTIMATE filter is generally unsuccessful when applied
to the lower order monotonic schemes. A review of errors asscoiated with advection schemes
and various approaches to the solution of 5.1.1 can be found in Rood (1987).

The one dimensional implementation of the flux form of the advection equation can be written as:

Tt+l _Tt Fi+l - Fi—l
+ 2 2
At h

=0 5.1.2

where T is a tracer value h=h; and i is the Cartesian coordinate in the &; direction. The flux
through the cell face i, Fi.1, is equal to the velocity u=u; multiplied by an interpolation of T onto
the cell face at i. This interpolation varies according to the type of scheme used. The fluxes for
the schemes used in SHOC are listed below. For some of the schemes the advective form of the
equation is also given to provide insight into the scheme. Stability of these schemes is usually
defined in terms of the Courant number:

q= m 5.1.3
h

5.1.1 Upwind

The upwind (or one-sided, donor cell) scheme is a first order scheme is given in its advective
form by:

Tt+1 _Tt

t _Tt t _ Tt
At +05(u - |u|)¥ +05(u+ |u|)Ti—hTi‘1 +0O(h,T) =0 5.1.4
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where u=0.5(ui;1+u;). The fluxes for the flux form of the advection equation, egn. 5.1.2 are
therefore:

F_, = 05(u —|u])T' +05(u +[u)T:, 5.15

This scheme suffers severe numerical error in the form of numerical diffusion, which acts to
destroy frontal features in the tracer distribution. This scheme is, however, monotonic (i.e. no new
maxima or minima are introduced into the solution) and positive definite (if T>0 at t=0 then T>0

for t>0 ). This scheme is stable for g < 1.

5.1.2 2" Order Centered

The 2™ order centered scheme is second order accurate and is given in advective form by:

t+1 _ Tt t _ Tt
T AtT +uTi+12hTi—1 +O(h2,T2):0 516

with corresponding fluxes through cell face i by:
F., =05y (T'+TY) 5.1.7

This scheme used with Euler forward time stepping is unstable and requires diffusion to stabilize
it. This means that a non-zero diffusion coefficient should be set when using the 2" order scheme
(a very rough approximation is V,=0.01.h*At). The minimum amount of diffusion required to
stabilize the 2" order Euler forward scheme results in the Lax-Wendroff scheme:

t+l _ Tt t 2
T =T o0 - osuent2 ]

- 5.1.8
At oX ox?

Note that the upwind scheme represents the minimum amount of diffusion that is required to be
added to the 2" order Euler forward scheme to render it monotonic (Rood, 1987). If a centered

time stepping scheme is used (e.g. leapfrog scheme) then 5.1.6 becomes stable if < 1. The 2

order scheme suffers numerical error in the form of numerical dispersion. This typically leads to
overshoots and undershoots in the solution in the vicinity of fronts resulting in new tracer maxima
or minima. Hence this scheme is non-monotonic and not positive definite. The scheme is,
however, computationally efficient.

5.1.3 2" Order Upwind

This second order upwind approximation is described by Leonard (1994, Eqn. 34) is stable for
Courant numbers < 2, and is given by:

T =T (BT - @- )T, + (BT 5.1.9
with corresponding fluxes through cell face i by:

F .= EHTL -EIHTL, for 0<q<2 5.1.10
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5.1.4 QUICKEST

The QUICKEST scheme (Quadratic Upstream Interpolation for Convective Kinematics with
Estimated Streaming Term) is a 3" order accurate upwind scheme described by Leonard (1979).
This scheme has very little numerical diffusion and numerical dispersion is limited to one small
ripple in the vicinity of fronts. Used in conjunction with the ULTIMATE filter the scheme is
monotonic and positive definite, and is the most accurate advection scheme SHOC provides. The
drawback is that it is more computationally expensive than other schemes. QUICKEST is stable

for < 1. The flux representation of the QUICKEST scheme is given by:
t+1 7t

T°=T —(qi%FH% - qi_%Fi_%) 5.1.11

where ¢ _, =UAt/h and d,, =U,At/h are the Courant numbers on the left and right cell
2 2

faces respectively. The values F;.1» and Fi.q, are the tracer concentrations at the left and right cell
faces where;

|

Fi_; = 0'5(Ti+1 +T‘—1) - 0-5qi_; (T| _Ti—l) - l% _%qiz_;FURV 5.1.12

with:

CURV =T, -2T_ +T_, for g, >0

5.1.13
CURV =T, -2T, +T,_, for G < 0
5.1.5 4th Order Scheme
The 4™ order scheme in advective form is given by:
t+1 _ Tt t _ Tt t _ Tt
T -7 3T 1T, T +O(h*) =0 114
At 3 2h 3 4h
with corresponding fluxes given by:
Foy = ulB M+ 1) ~ 5T +TY)] 5.1.15

The 4™ order scheme has error characteristics of the same type as the 2" order scheme although
less severe. This scheme is more accurate than the 2™ order scheme and when combined with
the ULTIMATE filter also provides very good results. The computational effort required is larger
than some of the other schemes.

5.1.6 Van Leer's Scheme

This scheme is a higher order upwind scheme, described by Van Leer (1979). This scheme is
monotonic and suffers less numerical diffusion than the 1% order upwind scheme. The
computational efficiency of this scheme is also fair. The fluxes for this scheme are given by:
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F .

F.=u [Tlt - 051+ qi)AiT] for u <0

=yt + 051-q)AT|  for u >0
5.1.16

where AT is an operator (if AT=0 the 1* order upstream scheme is recovered). An expression that
is monotonic with now numerical diffusion is given by (Allen et al, 1991):

_ 2(T| _Ti—l))(Ti+1 _T|)
AT = for (T, =T, (T, —T))>0
(Ti+1 _Ti—l) 5.1.17

AT =0 for (T, =Tiy))(Ty —T;) <0

5.1.7 Semi-Lagrangian Scheme

The semi-Lagrangian scheme adopts the approach of tracing back along a velocity streamline
from each cell node until the location in the grid at time t-At is located. The value of the tracer at
this location at time t is then equal to the tracer value at the origin of the streamline (cell node) at
t+At. Generally an interpolation is required to obtain the tracer value at the end of the traced
streamline. The semi-Lagrangian formulation in SHOC uses a tri-linear interpolation which results
in characteristics similar to the 1% order upstream method (i.e. diffusive, monotonic, positive
definite). The advantage of this scheme is that it is unconditionally stable, hence tracers may be
invoked on much longer time-steps than the 3D mode. Also, the origin of the streamline only
needs to be found once irrespective of the number of tracers simulated, thus this scheme
becomes more computationally efficient in comparison to other schemes as the number of
simulated tracers increases. The three-dimensional representation of the semi-Lagrangian
scheme is (Casulli and Cheng, 1992):

Tlt;':t< = Tt 5.1.18

i-a,j-bk-c

where a=u;At/h;, b=u,At/h, and c=wAt/Az are the Courant numbers in the &, &, and z directions.
The tri-linear interpolation can be written as:

Tit—a,j—b,k—c =@1-n@a- p)[(l— q)Tit—I,j—m,k—n + qTit—I,j—m—l,k—n]
+(1-r) p[(l— )T, Lj-mk-n T qTit—I—l,j—m—l,k—n]
+r(l- p)[(l— Q)Tit—| j-mk-n-1 T qTit—I,j—m—l,k—n—l]

+r. p[(l— )T, Lj-mk-n-1 T qT, —l,j—m—l,k—n—l]

5.1.19

where for a,b,c>0, I,m,n are the integer parts and p,q,r the decimal parts of a,b,c respectively, i.e.
a=l+p, b=m+q and c=n+r.

Due to the longer time-step that may be employed with this scheme it is possible to solve the
tracer equation on a different (longer) time-step, At,, than the momentum equations. Figure 5.1(a)
shows surface and a cross-shelf section of salinity solutions using the semi-Lagrange scheme for
a simulation performed on the North West Shelf of Australia using the momentum time-step At =
780s. Figure 5.1 (b) shows the same simulation with the semi-Lagrange scheme invoked on
every 4" time-step, i.e. the tracers operate on a time-step At; = 3120 s. Solutions are visually
identical and significant saving is made in the computational time (Table 5.1).
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Table 5.1 : Tracer time-stepping run time ratios

Time-step (s)

Mean CPU / iteration (s)

Run time ratio

780

0.561

0.00234

3120

0.494

0.00206
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Figure 5.1 (a) : Salinity solutions for At, = 780
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Figure 5.1 (b) : Salinity solutions for At; = 3120
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5.1.7 Angular Momentum Scheme
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The angular derivative (see Kowalik and Murty (1993), p51, 186) is an implicit second order in
space and time scheme which exhibits unconditional stability. This scheme is implemented for
momentum only to better handle instances where the Courant stability criterion is violated in the
momentum advection, typically due to large vertical velocities near large changes in bathymetry.
The sub-stepping algorithm is not always successful in handling these violations, hence the use
of the implicit angular derivative to improve stability. Substituting the 2" order fluxes 5.1.7 into
5.1.2 gives an explicit form of the difference equation:

Tt+l —-I-t + ui+1(|-i+1 +-I-i)_ui (-I-I +-I-i—l) = 0

At

2h

5.1.20
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The angular derivative is constructed by evaluating one of the tracer values in each of the flux
terms at the forward time-step, e.g;

T T U (T + T U (T + TS

Al oh =0 5.1.21
This can then be re-arranged to solve for Ti”l, e.g;
T = At U T — U, (T| +T|t—;l)
T = ?31 5.1.22
1-Atu,,, ——
( i+1 2h )

Note that if the grid is ordered correctly (i.e. 5.1.22 is solved in order of increasing i) then the
value of Ti‘fll is known since it was calculated one grid cell before the current grid cell. This can
be extended to three dimensions, noting that at land boundaries are subject to the zero-flux

condition, T =0 or the free-slip condition, T.';* = T.""*. The surface and bottom vertical fluxes

are equivalent to prescribing a free-slip condition at the surface and the bottom. In three
dimensions the angular derivative must start in the surface south-west corner of the grid and
proceed in order of increasing k, increasing i and increasing j. Note that the implicit nature of this
algorithm makes it unsuitable for use with multi-threaded or distributed processing.

5.1.8 Implicit Vertical Advection

An implicit second order vertical advection scheme is included which provides unconditional
stability for vertical advection, hence improves stability in regions of large horizontal divergence.
Under these circumstances vertical advection may violate the stability criterion (note that the CFL
condition for the time-step does not consider vertical motion) and fuel instability in horizontal flow.
The vertical advection equation is written as (discetizing the time derivative as Euler forward for
simplicity):

n+l n

u™—-u"  owum™
+
dt 0z

= f(u) 5.1.23

Where u is velocity in either e; or e, directions and f(u) is the sum of horizontal advection,
diffusion, pressure and Coriolis terms. This may be written:

n+l
U™t =y +dt_f(u)—dta% 5.1.24
Z

Using fractional steps to split the equation; first solve for f(u):
u=u"+dtf(u) 5.1.25

Then solve for vertical diffusion implicitly:
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awu n+1
0z

u™ =0 -dt 5.1.26

For non-uniform vertical grid spacing, the velocity at any vertical layer face (see Fig. 1.1) is
provided by a linear interpolation:

a, =df (u -u_)+u,_ where df, = —*1 5.1.27
k k (Y k-1 k-1 k dz, +dz,_,
Then dropping the time superscripts and discretizing:
owu™* . .
> = (W qlyy — WU, )/ dz, 5.1.28

The vertical velocity is defined at the layer faces and includes surface and bottom boundary
conditions. Incorporating this into the variable W and noting the stagger of the index k (i.e. W is
defined in cell layer faces rather than centres, hence has dimension nz+1 rather than nz), then in
the e; direction;

W, = 0.5(wtop; +wtop,_,) k =k

W = 05(W, (s +Wi_yphy) Ko <k<k, 5.1.29

W, , = 05(wbot, +wbot, ;) k=k, -1

Similar velocities are defined in the e, direction. Using the definition of W, 5.1.26 and 5.1.28, then
for the mid-water layers k, <k <Ki:

~ dt . "
U, =0 —— (W (df, ., (Ups, —U,) +U) =W, (df (U, —U,)+U,,)) 5.1.30
k
_~ ot . - A " " A
= U =U——— (Wkdfk+luk+1 = W df U+ Weu - W df u, +widfu g - Wk—luk—l)
k

5131
u.dz, .. . . . ., _udz,

= T +u (W, — W dfy,, =W, dfy) +u Wi, +u s (W dfy =W ) = dt
5.1.32

The vertical diffusion implicit formulation is written as (see Section 6.12):
dz, _

U, ry -C,-C, |+u.,C, +u ,C, =rhs 5.1.33

where:
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v v ~dz
C,=——-, C,=—, rhs=0—
dzz,., dzz, dt
Including 5.1.32 in the definitions of C, and C,; gives;
_ Uk 1 ~
C,=——+wdf,,
2z, 1
U N -
Cp =~ + W, df W,y
k
Then:
dz, N _
U, e -C,-C, - W, +w, |+u,,,C +u,_,C =rhs
At the surface, kK = Kq:
owu"™ . .
32 = (Wislly — Wi 5Uys) / dZ,
leading to:
o~ adt . " " "
U, =u _dT(Wksuks = Wye 1 Of Uy + Wi, Of Uiy — Wks—luks—l)
ks
u,dz, A N ., _udz,
= + U (Wi = Wiy Of ) + Uy (Wi, A =Wy ) = — =
dt dt
Then:
C,=0
U - ~
Cp = = + W Of i — Wy
dzz,

And 5.1.37 follows. For the bottom layer, K =K, :

aWU n+l
0z

= (Wip Uiy = Wi s Uy) / dZ,

leading to:

5.1.34

5.1.35

5.1.36

5.1.37

5.1.38

5.1.39

5.1.40

5141

5.1.42

5.1.43
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L dt . R R .
U =u- dz.. (kadfkb+1ukb+1 = Wy Of 55Uy + WUy, — ka—lukb) 5.144
ko
Uy, 0z, N . . _ udz,
= == T Uy (Wi = Wy g ~ Wi Oify1) + U Wiy OF g = —— 5.1.45
dt dt
Then:

Uk+1 y

C,=———+w,df,, 5.1.46
k+1

C,=0 5.1.47

The tri-diagonal matrix is constructed using 5.1.35 and 5.1.36 for the middle layers k, <k <Kk,

5.1.41 and 5.1.42 for the surface layer k =K, and 5.1.46 and 5.1.47 for the bottom layer k =k,
in conjunction with 5.1.37.

52 The ULTIMATE Limiter

The ULTIMATE (Universal Limiter for Transient Interpolation Modelling of the Advective Transport
Equations) limiter (Leonard, 1991) is a scheme which may be applied to higher order finite
difference advection schemes to remove spurious oscillations and render the scheme monotonic
without altering the accuracy of the original advection scheme. This scheme has been applied
and evaluated with the QUICKEST algorithm by Binliang and Falconer (1997) and falls into a
class of schemes knows as TVD (total variation-diminishing) schemes designed to address
spurious oscillations. Normalised tracer variables are introduced at the cell faces:

T-T, = _ "l

-+ = T ) = 5.2.1
T =Ty w Tp =Ty

where Ty is the tracer concentration at the upstream cell center and Ty, is the tracer concentration
at the downstream cell center. The monotonic solution is obtained if:

T.<Tl/q, for0<T <1 5.2.2
T<T.,<1 for 0<T <1 5.2.3
T.=T, for 0<TorT >1 5.2.4

+

NI

5.3 Advection Scheme Characteristics

The numerical diffusion and dispersion inherent in a scheme is evaluated by setting up a test
domain where a frontal feature is advected along a length of straight coastline. The conservation
characteristics may be evaluated by observing the evolution of total tracer content in a closed
domain subject to wind driven circulation.
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5.3.1 Numerical Diffusion and Dispersion

Results for the transport of a tracer front along a straight coast on the western side of a test
domain surrounded by three open boundaries are shown below. The domain is forced by a
southerly wind (7.5 ms™) with an initial condition for the passive tracer of 10 above 5m depth and
20 below 10m. High concentration tracer (30) is introduced along the southern boundary. The
surface tracer concentration distribution and the concentration along a north-south transect
midway along the domain are displayed below for each scheme. The typical diffusive
characteristics of the odd ordered schemes and dispersive characteristics of even ordered
schemes can be observed. A dramatic improvement in the solutions is obtained by using the
ULTIMATE limiter on the higher ordered schemes. Run time characteristics are summarised in
Table 5.2 (note: these are grid and processor dependent and act as a guide only).

Table 5.2 : Advection scheme run time ratios

Scheme Mean CPU / Run time ratio Normalised
iteration (model:real) Speed

(s) (%)
1% order 0.196 5113:1 100
2" order 0.201 4969:1 98
2"% order + ULTIMATE 0.250 4008:1 78
QUICKEST 0.220 4555:1 89
ULTIMATE QUICKEST 0.268 3734:1 73
4" order 0.202 4962:1 97
4" order + ULTIMATE 0.251 3988:1 78
Van Leer 0.208 4799:1 94
Semi-Lagrangian 0.255 3927:1 77
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Figure 5.2 : Tracer Concentration using 1* Order Upwind Scheme
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Figure 5.3 : Tracer Concentration using Van Leer’'s Scheme
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Figure 5.4 : Tracer Concentration using 2" Order Scheme
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Figure 5.5 : Tracer Concentration using 2" Order Scheme + ULTIMATE
(a) Surface Distribution (b) Surface Transect
0 200000 400000 600000
30 I =
28 b
.§ 26 4
600000 600000 E 24 i
§ 22 3
20 3
18 1 L L L L L |
100 200 300 400 500 600 70(
Distance (km)
400000 400000
200000 200000
0 0

0 200000 400000 600000

0000 31 Jan 2000 +08

51



SHOC Scientific Manual

Figure 5.6 : Tracer Concentration using QUICKEST
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Figure 5.7 : Tracer Concentration using QUICKEST + ULTIMATE
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Figure 5.8 : Tracer Concentration using 4" Order Scheme
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Figure 5.9 : Tracer Concentration using 4~ Order Scheme + ULTIMATE
(a) Surface Distribution (b) Surface Transect
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Figure 5.10 : Tracer Concentration using Semi-Lagrange
(a) Surface Distribution (b) Surface Transect
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5.3.2 Conservation Characteristics

The conservation characteristics of the advection schemes were investigated by closing the
boundaries of the previous simulations and using an initial depth dependent temperature profile.
The total change in heat throughout the simulation provided an indication of the scheme’s
conservation characteristics. All the advection schemes in flux form display excellent
conservation characteristics. In the northern half of the test domain the surface temperature was
set at 20°C throughout a surface layer 30m deep, and 10°C below 30m. In the southern half the
temperature was 15°C throughout. This provided both vertical and horizontal fronts for the
advection scheme to cope with. Results are presented after 30 days below. The conservation
parameter plotted is the total heat in the domain, expressed as a % deviation from the total heat
at time = 0. The total heat at time t is given by:

C'= TG, j,k).AZ" (i, j,k).area(, j) 5.3.1

ik
then the conservation parameter is given by:

t _ 0
conservation' = 100% 5.3.2

The results are presented below; these results also provide additional insight into the numerical
error associated with each scheme.

Figure 5.11 : Heat Conservation using Semi-Lagrange
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Figure 5.12 : Heat Conservation using 1* Order Upstream Scheme
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Figure 5.13 : Heat Conservation using Van Leer’'s Scheme
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Figure 5.14 : Heat Conservation using 2™ Order Scheme
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Figure 5.15 : Heat Conservation using 2™ Order Scheme + ULTIMATE
(a) Surface Temperature Distribution (b) Heat Conservation
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Figure 5.16 : Heat Conservation using QUICKEST
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Figure 5.17 : Heat Conservation using QUICKEST + ULTIMATE
(a) Surface Temperature Distribution (b) Heat Conservation
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Figure 5.18 : Heat Conservation using 4" Order Scheme
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Figure 5.19 : Heat Conservation using 4" Order Scheme + ULTIMATE
(a) Surface Temperature Distribution (b) Heat Conservation
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5.4 Stability sub-stepping

The stability criterion for the advection schemes used in SHOC dictate that the Courant number
must be < 1. This may be violated locally in the model if the forcing function becomes large (e.g.
for large wind stress) even if the CFL condition is satisfied. An option exists in SHOC where if the
maximum Courant number in the grid becomes > 1 then the advective terms (for 2D/3D
momentum and tracers) are calculated using a sub-timestep, At, <At where g, = Atu/h<1

for all u and h in the grid. This sub-timestep is given by:

At = sh 5.4.1
u

max
where sf is a ‘safety factor, typically sf=0.9 and un.x is the maximum velocity in the grid at time t.
The advective terms are looped on the sub-timestep until t+At is reached, then the remaining
terms in the model equations are calculated using the original time-step, At. Note that the original
time-step must still obey the CFL condition so as fast moving gravity and internal waves are

adequately resolved. This sub-timestepping guarantees that advection schemes are always
stable regardless of the forcing imposed.

A comparison of elevation at a location in the domain center of the simulations of Section 5.3.1 is
made between results obtained using the CFL time-step, At = 22505, and results obtained with

sub-stepping on the advective terms using At = 510s. No difference is observed when sub-
timestepping is invoked.

Figure 5.20 : Elevation Comparison of Sub-Timestepping Method
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6. Mixing Schemes.

6.1 Mixing Scheme Types

SHOC employs a variety of mixing schemes to generate the vertical mixing coefficients, V, and
K,. The mixing schemes available are:

Constant

Csanady type scheme
Mellor-Yamada level 2.5
Mellor-Yamada level 2.0
Modified Mellor-Yamada 2.0
k-

k-

W88

ONGORA~LONE

These schemes are described below.
6.2 Constant

This scheme simply uses a time and space independent constant value for vertical viscosity and
diffusivity.

V, = constant
K, = constant

6.2.1

6.3 Csanady

The vertical viscosity and diffusivity are approximated using the approach of Csanady (1982),
with the modification of Bowden and Hamilton (1975) to account for the effect of stratification, i.e.

V, =V, +a,uH@1+10R) * 6.3.1
K,=K,+a,uH@+333R)* 6.3.2
where u- is the maximum of surface and bottom friction velocities, H is the water depth, Vg, Ko

are the background viscosities and diffusivities respectively, ay ~ 0.0625 and ax ~ 0.03 are
constants and R; is the gradient Richardson Number,

N 2
R = W 6.3.3
where N is the Brunt-Vaisala frequency:
100
N2 Og| -—=— 6.3.4
p 0z

And M is the shear frequency:
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@
0z

ov

M? = —
( 0z

)? 6.3.5

)*+(

6.4 Mellor-Yamada 2.5

The Mellor-Yamada mixing scheme is based on Mellor and Yamada (1982). The eddy viscosity
and diffusivity are related to the product of a velocity scale and a length scale:

V,=c,JkL or V,=S,qL 6.4.1

K,=c,vkL o  K,=S,qL 6.4.2

where K is the turbulent kinetic energy (TKE mzs'l), L is the turbulence length scale and C, and
C;I are dimensionless stability functions. Note that turbulent kinetic energy may be substituted by

turbulence intensity, q=+2k and thus C, =\/§SM and C, Zﬁ&. The latter forms of

equations 6.4.1 and 6.4.2 are used by Mellor and Yamada (1982). Since this closure scheme
may be written in terms of k or ¢, it is sometimes referred to as the kkL closure scheme.
The length scale and TKE can be related to the normalised dissipation rate, €, (m?s™) via:

= 6.4.3
B,L

~| %

3
e=(c)’ 9
1

where 02:0.5562 is the momentum stability function for neutral flow and
— n3/2 0y-3
B, =2%%(C))° =166.

Turbulent kinetic energy is obtained from the solution to the TKE equation, written as:

D—k—iuk%:P+B—£ 6.4.4
Dt 0z "oz

where U, = 0.283/KL for the Mellor-Yamada scheme, P is the shear production:

ou ou
P=V 12 4 (2172)2 6.4.5
z[( aZ) (az) }

and B is the buoyancy production:
B=-K,N? 6.4.6

z

where N? is the buoyancy frequency:

N2 -_909 6.4.7

P, 0z

Boundary conditions for the surface and bottom may be specified as Dirichlet conditions;
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us
k = 5
Cu
- 6.4.8
b
u*
k = 5
c
L “u ]

where US and U are the surface and bottom friction velocities respectively, or Neumann
conditions (zero flux);

uk%:o z=n, z=-H 6.4.9

Alternatively, 6.4.4 can be written in the Mellor-Yamada nomenclature in terms of turbulence
kinetic intensity g°=2k (Mellor and Yamada (1982), eqn. 16) :

2 2
Dq _iuqaizz(pﬂg—g) 6.4.10
Dt o0z " oz

where U, = Squ with §4=0.2 (Mellor and Yamada, 1982, p862).

The length scale is derived from the g°L (or kL) equation:

2 2
Dq’L _ 0, 0q L:L[E

L
— P+E.B-(1+E,(—)¢ 6.4.11
Dt 2"t o7 1 3B z(L))}

4

where E;=E;=1.8 and E,=1.33 and again U, = Uy = Squ. Here L, assumes a parabolic profile:

d.d
L, =k—>2— 6.4.12
d, +d,
or a triangular function :
L, =« min(d,,d,) 6.4.13

where where kK = 0.4 is the Von Karman constant, d, and ds are the distances from the bottom
and surface respectively. Additional wall proximity functions are outlined in Warner et al (2005).
Boundary conditions for L are given by the Dirichlet condition:

L=«(d,+2) z=-H
L=k(d,+z) z=n

6.4.14

where and Zg and Z> are the bottom and surface roughness lengths associated with the bottom

and top boundaries respectively.
The stability functions used are given by Mellor and Yamada (1982, Eqg. 41, 42):
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/]1 - (/]1 + /]z)Rf

S, =3A -R 6.4.15
f
s =5 ABU-C)-[B(-C)+aA +an R, 616
Az Bl/]l - [Bl(/]l + /‘2) - 3A1]Rf
where R; is the flux Richardson number:
R, :__PB:%R 6.4.17
and:
/]1 = } — Zﬁ
3 B,
B 6.4.18
/]2 =2 4 Gﬁ
1 Bl

with A;=0.92, A,=0.74, B;=16.6, B,=10.1 and C;=0.08.

Alternatively, denoting the non-dimensional buoyancy parameter as (Mellor, 1992, Eq. 14.2):

G, =-N?—= 6.4.19

with — 028<G,; <0.0233(Galperin et. al.,1988), then:

S, =A, 1-6A /B, 6.4.20
1-3AG, (6A +B,)
_ COEF3+S, G, COEF4
S, = 6.4.21
1-G, COEF5

where COEF3=A,(1-3C;-6A1/B;), COEF4=18A;A;+9A;A, and COEF5=9A,A..
The mixing coefficients V, and K, are then obtained via 6.4.1 and 6.4.2 using 6.4.10 to get the

turbulence intensity g, 6.4.10 and 6.4.11 to get the length scale L (i.e. L=g°L/g?), 6.4.3 to get
dissipation for the loss terms and 6.4.15 and 6.4.16 for the stability functions.

6.5 Mellor-Yamada 2.0

The Level 2.0 Mellor-Yamada scheme neglects the material derivative and diffusion term in 6.4.4
(or 6.4.9) resulting in:

P+B=¢ 6.5.1
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The turbulent length scale is approximated by a triangular analytic form, where L decreases
linearly towards the surface and bottom boundaries, i.e.

L=« min(d, +2,d +2) 6.5.2

The turbulent length scale is modified by the local turbulence of the flow via the method of
Blackadar (1962):

-1
L= {i + i} 6.5.3

H 6.5.4

with 01< y, < 04,

The mixing coefficients V, and K, are then obtained via 6.4.1 and 6.4.2 using 6.5.1 to get the
turbulence intensity g (using 6.4.3 to relate € to q, 6.4.5 for P and 6.4.6 for B), 6.5.2 and 6.5.3 for
L and 6.4.15 and 6.4.16 for the stability functions. If the vertical shear becomes very small or the
flux Richardson number becomes less than a certain threshold (R.y~0.19) then mixing
coefficients revert to the background coefficients, V,q, K.

6.6 Modified Mellor Yamada 2.0

An alternate turbulence length scale parameterisation for the Mellor-Yamada 2.0 mixing scheme
is included (Burchard et al, 1999; Eifler and Schrimpf, 1992; Demirov et al., 1998). This is based
on a three layer system where surface and bottom mixed layers are intersected by a stably
stratified interior layer. This scheme detects the height of each mixed layer by identifying the
depth where the gradient of the vertical density profile exceeds a certain threshold (currently 0.01
kgm™). Alternatively the mixed layer heights may be located by identifying the depth where the
turbulent kinetic energy, k, becomes less than a threshold (10 Wkg™). The length scale in the
top and bottom mixed layers is given by:

KZ e
L= P 1-R;) 6.6.1

1+ -
c,h

where z is the distance from the surface or bottom, c, = 0.065 is a constant k=0.4 is the Von
Karmen constant, R; is the flux Richardson number which accounts for stratification effects in the
mixed layers and e = 1 to 3 is a tuning parameter. The surface and bottom roughness lengths

(Zg and Z§) are added to the turbulence length scale in the top and bottom layers. Within the
stably stratified region the mixing length scale is given by:
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05
L=c Ll 6.6.2
N

where N is the Brunt-Vaisala frequency, and c; is determined by matching the mixing length scale
at the interfaces between the top or bottom mixed layer and the stratified region, i.e.

LN
C =

i T 05
k z=h,

where h,, is the depth of the interface between the top or bottom mixed layer and the stratified
region and L, is the mixing length scale at the bottom/top of the surface/bottom mixed layers as
given by 6.6.1. A minimum mixing length scale is imposed in the stratified region, typically
Lmin=0.01m. An upper limit on the length scale is also imposed (Galperin, 1988):

L < OS?k for N*>0 6.6.4

This type of scheme displays better results than Mellor-Yamada-2.0 or k-¢ for estuarine
applications where a three layer type system exists. A large degree of flexibility exists in tuning

this mixing model, where changes to ZOS Lmin, €, background mixing coefficients V,o, K, and
density gradient threshold may affect the solution.

6.7 k-g

The k-¢ turbulence closure scheme is based on Burchard et al (1998). This mixing scheme
retains the time derivative and diffusion in the k equation so that TKE is given by the solution to

6.4.4 with U, =V, . Also, The turbulent length scale is no longer parameterised algebraically but
obtained from the solution of the € equation:

De o0 o0¢

£
E_EUSE =E(C€1P+C€3B—C€2£) 6.7.1

also using the relation 6.4.3. This necessitates the inclusion of additional tracers into the model
representing TKE and €. Here v, is the eddy diffusivity of € and:

v, =—+ 6.7.2

with the Schmidt number o, = 1.08. The constants c;; = 1.44, ¢, = 1.92 and c;; = -0.4 (for
unstable stratification c.3 = 1.0). The stability functions are those of Galperin et al (1988) and are
given by:

¢’ +2.182a,,
c, = > 6.7.3
1+204a,, +531247
., _ 06985
cC,=—— 6.7.4
“ T 1417340,
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for —0.0466< a, < 056 where oy is the non-dimensional buoyancy parameter (note
equivalence to Eq. 6.4.19: G=-0.5a):
LZ

ay = N? 6.7.5

Dirichlet  boundary conditions for € are given by (see GOTM Manual,
www.gotm.net/pages/documentation/manual/pdf/ad.pdf Eq. 134).

k3/2
€=(C2)3W z=-H
K V4
0t 25) 6.7.6
0)3 k3/2 ,
e=(C P — =
C iz 7"

The eddy viscosity and diffusivity are therefore obtained from 6.4.1 and 6.4.2 with k derived from
the solution to 6.4.4, L derived from the solution to 6.7.1 using 6.4.3 to relate € to L and the
stability functions given by 6.7.3 and 6.7.4.

6.8 k-w
The k-w closure scheme is based on Umlauf et al (2003). This 2-equation turbulence model is

similar to the k-€ model, but uses the ‘turbulence frequency’, w, rather than dissipation, €; the
relation being:

£=(C))* f kw 6.8.1
where
1 Xe <O
f,, =11+680xy7 1 ok dw 6.8.2
' 1+4oo)(k2 X0 M= o ax,
X w’ 0X; 0X,
and
+ WSWSS,
w = oy Xo= o 3'3 6.8.3
1+80y, C)) w

where S; and V\/IJ are defined as:
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SI_:E ﬂ+ai
bo2|ox;  0x

\/\/IJ* :\Ni]. +£”le 6.8.4
W. :l ai—ai
bo2|ox, 0

The wequation is given by:

Dw 0 oO0w_ w f
—— -y —="(c..P+c .B-c ., ¢ 6.8.5
Dt 0z € 9z k( “ “ 2 o )

with the ¢y = 0.52, ¢ = 0.8 and ¢,z = -0.629. The last constant is only valid using the stability
functions of Canuto et al (2001) with a steady state Richardson number of 0.25 (see Umlauf et al
2003, Table 6). The Schmidt numbers o, and o, are both equal to 2 (Umlauf et al 2003, Table 1).
It should be noted that the functions f,, and f., are included to better parameterise the effects of
buoyancy and rotating flows; if f., and f., = 1 the model of Wilcox (1988) is recovered.

The stability functions of Canuto et al (2001), also described in Burchard and Bolding (2001) are
given by:

— S0 + SlalN + SZGN

cC =
“ d,+da, +d,a, +d,al +d,a,a, +d.a;}; coe
Cr —_ S4 + SSO’N + SGGN -
# d,+da, +d,a, +d,af +d,a.a, +d.a’
where:
= A
1 3
8, = A, (Ae + A) + 24,45 (A, _5/]2 ~As) +§/]1A5/18
3 6.8.7
S; = _g/]l(/]g —A), 8, =24, s, =24,
2 1 3
Se = 5/]5 (345 - 1) _E/]s/ll (B4 - 4,) +ZA1(/]6 —A)
and,
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d, =342
d, = A, (74, +34,)
d, = A1 - 1) = U - &)
4 6.8.8
d, =A,(41, +34,)
d, = A, (AAs =344, = A (NS = A3)) + AsAg (B3NS — A7)

1
d, =7 (4 ~38)(4; - )

with;

(A Ay Asi Ay A, A, Ay, A) = (0.107,0.0032,0.0864,0.12, 11.9,0.4,0,0.48)  6.8.9

The buoyancy and shear numbers are given by:

2
aN = 4—2 N 2
&
2T 8 3 6.8.10
u u
a, =4 (5 +(Z2)
£ 0z 0z
The limits given by Warner et. al (2005), 40b in conjunction with Table 4 are applied.
Dirichlet boundary conditions for ware given by:
k1/2
W= o by z=-H
CyK(db + Zo)
6.8.11
kl/2
Z=1

w= 0 S
C.k(ds +2;)

The eddy viscosity and diffusivity are therefore obtained from 6.4.1 and 6.4.2 with k derived from
the solution to 6.4.4, L derived from the solution to 6.8.5 using 6.4.3 and 6.8.1 to relate wto € and
L and the stability functions given by 6.8.6.

6.9 w88

=10.

Cw

The W88 model of Wilcox (1988) is the same as the k-w model, but using fcp =f

6.10  Stability functions

The default stability functions for the various 2-equation turbulence closure models are listed in
Table 6.10.1.

69



SHOC Scientific Manual

Table 6.10.1 : Default stability functions.

Closure scheme Stability function Argument
MY2.5 Mellor (1992) Gy
k-€ Galperin et. al. (1988) On
k-w Canuto et. al. (2001) model A 4a /(C2)6, 4a,, /(C2)6
was Canuto et. al. (2001) model A 4a /(C2)6, 4a,, /(C2)6

The arguments to stability functions are the non-dimensional shear and buoyancy numbers, given
by Burchard et. al. (1998, Eq. 27, 28) as a,, = L°N?/k and a,, = L*M */k,, with N* and M?
given by eq. 6.3.4 and 6.3.5 respectively. Note the argument to the k-w and W88 stability

functions is 4k*N?/&? and 4k®M ?/ £ (Canuto et. al., 2001, eq. 14c), which using eq. 6.4.3
are equal to the arguments listed in Table 6.10.1.

Note the equivalence of parameters in k-€ and Mellor Yamada formulations:
g=+2k

C, =4/2S,, and C, =428,
G, =05a, and G, =-05a

Alternative closure schemes may be substituted for each turbulence model. In addition to the
schemes listed above, the following are available.

6.10.1 Canuto et. al. (2001) model B

These stability functions have the same form as Eq. 6.8.6, except the following constants are
used:

(A Ayi Ass Ay A, A, Ay, A) = (0.127,0.003360.09060.10111.2,0.4,0,0.318)  6.10.1

6.10.2 Kantha and Clayson (1994)

These functions are described in Warner et. al. (2005, Eq. 30, 31), and are given by:
g = AU-6AIB)
1-3AG, (6A +B,(1-Cy))
gy = Bi -+ (BAA +9A A (1-C,))S,G,
1-9AAG,

With A;=0.92, A,=0.74, B;=16.6, B,=10.1, C,=0.7, C3=0.2.

6.10.2

6.10.3

The limits given by Warner et. al (2005), Eq. 33 in conjunction with Table 3 are applied, i.e.
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— G:H _(éH _GH _cm)2
G, +GHO -2G

" 6.10.4

H _crit

with G
G

i min <Gu <Gy where éH is given by Eq. 6.4.19 and G
=-0.28.

=0.02, G,,,=0.0233 and

H _crit
H _min

6.10.3 Munk and Anderson (1948)

This simple stability function uses constant coefficients, e.g., Burchard et. al. (1999. Eq. 2.73,
2.74).

c,=c, 6.10.5
c,=¢c,/P, 6.10.6
P° for Ri <0

r

where Ri is the gradient Richardson number (Eg. 6.3.3) and F’r0 = 0.7143 s the neutral Prandtl
number.

6.10.4 Eifler and Schrimpf (1992)

This stability function is of the form (Burchard et. al., 1999, Eq. 2.76, 2.77):

Cﬂ =05 6.10.8

- 1 /
c, —C#F(l— R()Y? 6.10.9
1-R,)=(/R?+1-R)? 6.10.10

with R =R /2P, and 018<c,/c, <2.

6.10.5 Schumann and Gerz (1995)

This stability function has the form (Umlauf et. al., 2003, Eq. 27):

— A0
c,=c¢, 6.10.11
' A0
c,=c,/P, 6.10.12
-Ri Ri
P, = Plexpt——0o)—— 6.10.13
P/RI”" R

where P? = 074 and Ri” = 025,

r
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Stability functions have a significant impact on vertical mixing. Solutions in a closed basin subject
to a westerly wind, with initial stratification of 20°C from 0-30 m and 10°C below 40 m are
presented below for all closure schemes and stability functions. Bottom depth is 50 m on the
southern coast and 110 m on the northern coast. Surface temperature and K, profile are
presented at 20 days for the various closure schemes with differing stability functions.

Mellor-Yamada 2.0.

0 500000 1000000 7
600000 600000 [ e —— =i
-10
-20
400000 N
£ -30
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[
200000 200000 0 -50
-60
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0 0
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-90
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6.11 Limits

The length scale is bounded by an upper limit for stable stratification (Galperin et al, 1988, eqn
22).

s% or Ls053q N2 >0

L2
N2 N

6.11.1

The upper limit on L is equivalent to a lower limit on the non-dimensional buoyancy parameter,
Gy. Upper and lower bounds for this parameter are given by Galperin et al (1988). Eq. 29 & 30:

- 028<G, <0.0233 6.11.1

where the lower limit applies for stable stratification. The length scale limitation also translates to
a lower limit for € in the k- model (Burchard et al, 1998, Eq. 16) :

£2 > 0.04%>N? N2>0 6.11.2

and a lower limit for win the k-w model (Warner at al, 2005, Eq. 43):

N2>0 6.11.3

wr N
J056(c?)

The k-¢, k- and Mellor-Yamada 2.5 mixing schemes all require minimum values of k and € to be
specified. Various sources supply differing values, summarized in Table 6.11.1. Note that given a
minimum g, then minimum wis computed via Eqn. 6.8.1 with f;,=1 for the k-w scheme:

E .
W =—"mn 6.11.4
o (C2)4kmin

and minimum length scale for MY2.5 is computed from Egn. 6.4.3:

0y31,3/2
— (Cﬂ) kmin

&

6.11.5

min
min

Minimum length scale can be over-ridden using the LMIN parameter in the input file.
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Table 6.11.1 : Minimum TKE and dissipation

Scheme Variable Value Reference
k-g k 7.6x10° m°s-> | Burchard (1998), eqn. 17, Warner (2005), Table 1
€ 1.0x10"* m’s™ Warner (2005) Table 1, GOTM code
£ 5.0x10™° m’s® | CRS code — unknown source - original MECO code
k- k 7.6x10° m°s-* | Burchard (1998), eqn. 17, Warner (2005), Table 1
) 1.0x10 ™ s™ Warner (2005) Table 1
£ 7.3x10"7 m’s® Warner (2005) Table 1 and eqn 6.9.4
€ 5.0x10° m*s® | CRS code — unknown source - original MECO code
MY2.5 k 1.0x10° m’s-* GOTM code
€ 1.0x10™ m’s™ GOTM code
k 7.6x10° m’s-* Burchard (1998), eqn. 17
£ 5.0x10"° m°s® | CRS code — unknown source - original MECO code
K 5.0x10° m’s-> Warner (2005) Table 1
€ 9.6x10" m’s-° Warner (2005) Table 1, kL=1x10" and eqn 6.4.3

Bold values are used as defaults. Default values may be over-ridden using MIN_TKE and
MIN_DISS parameters in the input file.

6.12  Implicit Solution Method

The vertical diffusion equation is written as:

n+l _ .n n+l
K + adv = hdiff +iuak 6.12.1
0z 0z
or
0 ok™
6.12.2

k™ =k" +dt.f(k)+dt—uv
0z 0z

where k may be k, g% g, € or wdepending on the closure scheme used. Using fractional steps to
split the equation; first solve for f(k):

Kk =Kk" +dt.f (k) 6.12.3
Then solve for vertical diffusion implicitly:
. — kn+l
=R+t 2 p? 6.12.4
0z o0z
or more generally:
. - a akn+1
K™ =k +dt—v +dtS, —dtS 6.12.5
0z o0z

where S, is a source term and S; is a sink term. If the surface is denoted layer 0 and the bottom
layer nz, the discretization becomes (noting positive z direction is up):
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~ dt| v v
K™ =k +— | e e Y=k (k —k +dtS, — dtS
dZ|:dZZk+1 (s % dzz, (ks k_l):| ’ |
2 2, +h 2t kg, D, e g Y 0P g
dt 7z, ., dzz, dzz,.,, dzz, dt

kk|:dz+dzs| + Uk+l + Uk i|_kk+1 Uk+1 _kk—l Uk :E%_'_dzso
k

dt  k, dz, Oz dzz,., dzz,
let sz—h, C,=- Y, rhs:l‘<~%+dzs0
dzz,,, dzz, dt
K, a4z, dzS -C,-C, |+kC, +kC, =rhs
dt K,

This forms a tri-diagonal linear system of equations:

[c, C, O : 0 k, | [rhs, = flux,, ]
Ch C Cy,p . 0 K, rhs,
0 C pnz-1 an—l Cmnz—l knz—l r hsnz—l
o . 0 Coz Cno | Ky | [rhs, + flux,,
where C, S dES' —Ch ~Ch
k

6.12.6

6.12.7

This system is solved by simplified Gaussian elimination (Thomas algorithm). The equations for
the surface and bottom must contain flux (Neumann) or prescribed (Dirichlet) boundary
conditions. For flux surface and bottom conditions Cy=0 and Cn,,=0 respectively, and any
surface or bottom fluxes are included on the rhs. Positive fluxes are out of and into the water
column at the top and bottom layer respectively. Note that the sink term is multiplied by k™/k" for
greater stability. This approach stems primarily from the turbulence diffusion equations for k, €, q2

or ¢°l (e.g. Burchard et al, 1998, p10,547).

This method of solving the implicit vertical diffusion is also used for the solution to tracer and
momentum vertical diffusion equations. Advection diffusion equations are solved using the

method of fractional steps, e.g.
For any tracer, T, using forward Euler time stepping:

1. Solve advection and horizontal diffusion equation:

~

T=T"+f(T)

2. Get intermediate solution from vertical diffusion:
T =T + vdiff

dT =T-T
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3. Get the solution at the forward time-step
T™=T+dT =T +(T-T)=T
=T +vdiff

n+l
=T" + f(T)+iKaT
0z 0z

where f(T) is the advection and horizontal diffusion.
For momentum, u; or u, using leapfrog time-stepping:

1. Sove for advection, horizontal diffusion, pressure and Coriolis
a=u""+f(u)

2. Get the intermediate solution from vertical diffusion
G =u"" + vdiff
du=G-u"t
3. Get the solution at the forward time-step
u™ =0+du=0+0G-u""?
=0+ (Uu"" +vdiff) —u"™ =0 + vdiff

n+l
—ut ety Lk
0z 0z

Note : this could be solved using U =U +vdiff as is done with tracers, however, the

solution appears more stable using u"? rather than U on the RHS.
6.13  Wave enhanced mixing

Wave enhanced vertical mixing for the k-g and k-w schemes is included by using surface
boundary conditions applicable to shear-free boundary-layers with injection of tke (e.g. Craig and
Banner, 1994). The Dirichlet condition for dissipation for shear-free boundary-layers with injection

of tke for the k-€ model is (GOTM Manual, Eq. 136):
£=(c))PK¥ 2L (z+ z,4) ¥ 5 6.13.1
and for the k-w model (GOTM Manual, Eq. 140 with p=n=-1, m= 0.5, Table 8):
w=(c) K2 (z+ z,) V2 6.13.2

where a=-253 and L = 025 for k-w (Jones and Monosmith, 2008) and a =-17.78 and

L = 0.025 for k-g (Umlauf and Burchard, 2003, Table 6). The function K is given by (GOTM
Manual, Eg. 128 or Jones and Monosmith. 2008, Eqg. 19):
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Wi 2/3 1

g,

K = (— : ] — 6.13.3
c,aL Zy,

With the wave energy flux given by (Jones and Monosmith, 2008, Eq. 9):
wf =a(u? +v?)%? 6.13.4

where U, and V, are shear velocities an the x and y directions respectively and @ ~100is the
wave parameter. The Neumann conditions (zero flux) for tke becomes:

U, ok
—K = = —wf z=n 6.13.5
o, 0z

Where g, =1for k-g and 2 for k-w (Umlauf and Burchard, 2003, Table 6). The parameter Z, is

the surface roughness including the wave amplitude, and is given by some factor of the
significant wave height. Jones and Monosmith (2008) achieved best results with the k-w scheme

using Z,; = 1.3H and @ = 60. Wave parameters are summarized for the k-g and k-w schemes
in Table 6.13.1.

Table 6.13.1: Wave Parameters

Parameter k- k-0
a -17.78 -2.53
L 0.025 0.25
Oy 1 2
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7.  Sigma Vertical Coordinates

7.1 Introduction

The o equations are related to the ‘z’ equations via the transformation:
* * * Z_,7
E’g)a-!t = 5)51—11: 7.1.1
(&.6.000) = by D

The equations for continuity, 3D momentum in the §; direction and tracers transformed to the o
system are included below (with the * dropped for clarity).

Continuity:

1 |:aDSu1h2 +6Dsu2h1:| _:O 7.1.2
hh,| 0& 0¢, oo

where Ds(&1,&,)=D=H+n is the total depth and wis the velocity perpendicular to ¢ surfaces:

9D, a—’7}——(0D +1) 7.1.3

1 oD
w=w-——/|hu(c—= +hu, (o
{21( : a51) (052 00 |

h,h, é

Momentum:

oDy, , 1 {a(usthlhz) . a(uluzDshf)}+ d(eu) __D, 9P , . D, oh , uiD, oh,

ot hh, 04, 04, 0o h,0 0¢, T hf 0&  hh, 04
1 0 ou
+Dy +—— |V, —2
i D, 60’[ z 60’}
7.1.4
where the horizontal diffusion terms are now:
1 D, oh,
Dy. = h,D.r. D.r -T 2 7.15
= hh, {afl( 1)t h1 21)} hh, |: 21052 22 afj
Tracers:
DT, 1 {a(ulTDshz) +a(uzTDShl)}ra(wT) ! { o.My 9Ty, 0 h v T
ot hh,| 04 d&, dc hh,| 9 h1 afl 652 *h, "9¢,

ii{K a_T}
D.do| ‘0o

See Blumberg and Herring (1987) for the full o equations in curvilinear coordinates. It is observed
that these equations are similar to those in the ‘2z’ system (eqns 2.1.4 to 2.1.7) except for the
inclusion of the depth term, Ds. The equations in SHOC are discretized according to eqns. 7.1.2
to 7.1.6 and the model is thus configured to operate in the o system if Ds = D, the total water
depth. The ‘2’ model is recovered by setting Ds=1. Extra terms in the o model pressure term (egn

7.1.6
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2.3.8) exist which also need to be included for the o model. Also, the vertical indexing is modified
slightly in the ¢ model so that vertical loops include all the o layers (as opposed to layers
encompassing the bottom to the free surface in the ‘z’ model).

The number of layers configured for the ‘z’ case is equated to the number of sigma levels, and
the distribution of these layers is generated by SHOC such that a logarithmic distribution exists at
the surface and bottom and a linear distribution in the interior. The netCDF input data is always
on ‘Z' layers and is linearly interpolated onto the ¢ layers (a smoothing filter in the vertical is also
applied). The bathymetry is checked to ensure no extreme gradients are encountered; if the
bottom slope becomes greater than 0.07 then the bathymetry is smoothed (up to a maximum of 5
passes) until the gradient becomes less than 0.07 (0.1 approximates an upper limit of bottom
gradients in the ocean; Mellor and Blumberg (1985)). The sigma layers converge at the coast,
and this can lead to small vertical grid spacing, which in turn may lead to vertical velocity stability
violations. To avoid stability violations the sigma system should always be used with time-
substepping. Note also that the minimum depth at the coast may need to be increased to
maintain stability when using sigma coordinates.

7.2 Numerical Sequence

Currently the sequence of calculation in SHOC is to solve the 3D equation, followed by the 2D
equations and then the tracers (Figure 3.1). This is an artifact of basing the SHOC numerics on
its predecessor MECO which used a first order Euler forward time-stepping scheme. The
presence of the total depth term (Ds=D=n+H) in the sigma equations places some restrictions on
this approach. The sigma approach in SHOC retains the MECO solutions to these restrictions,
which are described below.

The Euler forward scheme requires that the depth averaged velocity is solved explicitly and
elevation is solved using the velocities at the forward time-step (or conversely elevation is solved
explicitly and velocities are solved using the elevation at the forward time-step) to maintain
stability. This is not a problem, as velocity can be solved explicitly and elevation can be solved
using the updated velocities. Also for stability reasons, this scheme requires that the u, Coriolis
term be solved using the updated u; velocity. Again this is not a problem if the u; velocity is
solved first. If a leapfrog scheme is used, then these stability restrictions are not valid.

In the sigma system the total depth at the forward time step is required to update velocity and
updated velocity is required in the Euler forward scheme to keep the Coriolis term stable; this
means elevation must be solved first so that total depth is obtained. Solving elevation first means
that, in Euler's scheme, the velocity pressure terms (i.e. surface elevation slope and vertically
integrated pressure slope) must use elevation at the forward time step to maintain stability. Hence
the 3D mode solution cannot precede the 2D mode solutions, as elevation at the forward time
step is not known at this point. However, the vertical integral of the 3D pressure must be
calculated for use in the 2D mode. In the sigma system this is no problem since there always
exists the same number of layers and one simply integrates from the surface (c=0) to the bottom
(0=-1). Hence in sequence in the sigma system should be:

1. Calculate the vertical integral from 0=0 to o=-1 of the 3D pressure field.
Do the 2D loop:
2. Calculate elevation at the forward time step, n™*, using ulav" and u2av"
3. Calculate velocity using n™* ,the 3D pressure integral and using ulav™" in u2av"
End 2D loop
4. Calculate the 3D velocities using n"**
5. Calculate the tracers.

It is not possible to apply this sequence to the ‘z’ coordinate model, since the vertical integral of

the pressure calculation requires the k index of the sea surface to be known at the forward time
step. This means the elevation at the end of the 2D loop, n™*, must be known for step 1 above in
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order to define the k level of the surface at the forward time step. However, the pressure integral
cannot be calculated after the 2D loop since the 2D loop requires this pressure gradient to
calculate velocity and hence elevation at the end of the 2D loop, thus closure to the sequence is
lacking. These problems would be avoided using a leapfrog scheme since the pressure gradient
can be calculated using elevation at the current time step, n".

In order to combine the sigma and ‘z’ models into one model and avoid this dilemma the velocity
transports are solved (e.g. depth multiplied by velocity) and only converted to velocity after the 2D
loop. This allows the 2D velocity to be calculated before elevation in the 2D loop, using elevations
at the current time-step, n". The vertical integral of the pressure gradient used in the 2D velocity
calculation can also use the k index corresponding to the surface at the current time-step. After
the 2D loop the elevation at the forward time-step (and hence total depth at the forward time-step,

Dgﬂ) is known and the velocity transports can be divided by D2+l to provide the velocities,

which are subsequently used to solve the tracer equation. The sequence used in both sigma and
'z’ systems is therefore:

1. Calculate the 3D velocity transports using n" and save the vertical integral (surface to bottom)
of the 3D pressure field for the 2D mode.
Do the 2D loop

2. Calculate velocity transport using n" ,the 3D pressure integral and using Dgﬂ ulav™ in
u2av"
3. Calculate elevation at the forward time step, n™, using D™ ulav™* and DJ™u2av"*

calculated in step 2.
End 2D loop

4. 5. Get 2D and 3D velocities by dividing velocity transports by D;”l
6. Calculate the tracers.

If the ‘'z’ model is used, then the total depth, Dy, is set to 1.0.

The only inconsistency this approach presents is that the implicit calculation of the vertical
diffusion term in the 3D velocity calculation requires the total depth at the forward time-step
(which is not available in step 1 above). In the above sequence the total depth at the current time-
step is used in its place (see below). It is assumed that the error introduced in this manner is
small in comparison to the uncertainty involved in approximating the vertical viscosity coefficient.

7.3 Treatment of the vertical diffusion terms

The advection-diffusion equation is discretized as:

dD¢ . 0V, o¢
—ZL + advect(®) = hordiff +——=2—= 7.3.1
ot 2 2 do D do

where advect(g) represents the advecive terms and hordiff() represents the horizontal diffusion
terms. Using the method of fractional steps this is solved in two parts, firstly the advective and
horizontal diffusion by an explicit method:

S Mt
W - hordiff (¢) — advect(¢) 732

where @ is a partial solution, then the vertical diffusion is solved implicitly:
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DYg"-Bp _ 3 V, og"

At oo D' oo

The time level of the total depth used in D is not important provided this level is used in both
7.3.2 and 7.3.3. The time level at the current level, t, is used for momentum, and t+1 for tracers.
The vertical diffusive equation for momentum in the o system is:

7.3.3

oDu, _ 0 V, 0y,

= _z-°11 7.3.4
ot do D do
Which is discretized as:
D™y ™ - D'l = At— 0V, 0 7.35
9o D' 0o

where U, is the solution of the advective, horizontal diffusive, pressure and Coriolis terms and
D=D". Dividing by D' results in a form that is solved by the vertical diffusion equation:
D" U= LAt 9V, du,

7.3.6
D' Lt D' 9o D' do

C

The solution to the vertical diffusive equation for momentum is therefore equal to :

At 0V, oy
U =——-= 737

' D'9o D'odo
The vertical diffusion algorithm is set up to solve an equation in the form of 7.3.7, but the quantity

required as an end product of vertical diffusion is D**U"". Therefore D'.du; must be added to
Dtﬁl to provide D"u ”l , i.e. the updated velocity transport is given by:

D™u" =D'G, + D'du, 7.38

This quantity is subsequently used in the calculatlon of the u, Coriolis terms. Note that if the
vertical diffusion is solved implicitly, then D'** should really be used on the rhs in equation 7.3.7
Since the total water depth at the forward time step, D!, is available when vertical diffusion of
tracers is performed, the tracer equation is discretized as:

DMT™ DT = At— 0 K, ot 7.3.9

o0 Dt+l o

where T is the solution of the advective and horizontal diffusive terms and D = D", Dividing
by D"! results in a form that is solved by the vertical diffusion equation:

M9 K, oT

T =T+
Dt+l aa. Dt+1 aa.

7.3.10

The solution to the vertical diffusive equation for tracers is equal to;
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and the updated tracer concentration is then given by;

TH =T +dT 7.3.12

7.4 Horizontal diffusion

It is reccomended to use Smagorinsky diffusivity when using the sigma system so that mixing
along sigma surfaces over steep bathymetry does not lead to cross-isobaric exchange in the
absence of any motion.

7.5 Sigma Model performance

The sigma and ‘2’ versions of SHOC were compared with POM on a straight channel with open
boundaries on the west and east ends and sloping bathymetry from 50m on the southern side to
100m on the northern side. The domain is forced by a westerly wind stress of 0.1 Nm™. This
configuration is the same as that used by Palma and Matano (1998) in evaluating open boundary
conditions using POM. The OBC's used here are cyclic on normal velocity and elevation and
Orlanski radiation on tangential velocity. Temperature and salinity are held constant. Results at a
location midway along the channel and 50km from the coast are summarised below.

Table 7.1 : Model Performance Comparison

Model Elevation (m) | 2D x-velocity | 2D y-velocity | 3D x-velocity | 3D y-velocity
(ms™) (ms™) (ms™) (ms™)
SHOC-z -0.557 0.196 3.50x10° 0.408 0.132
SHOC-o -0.597 0.221 5.39x107 0.356 0.063
POM -0.450 0.205 3.58x10™ 0.366 0.060
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8.  Wetting and Drying

SHOC possesses the capability of performing wetting and drying of cells. This involves the free
surface moving through the constant ‘z’' layers allowing a given cell to be emptied of water and
remain completely dry for one or many time integrations. A manifestation of this is the drying of a
water column one cell deep such that the cell corresponds to land. Conversely, land cells may
become wet if subjected to sufficiently high water level. This feature is useful for modelling
regions subject to large tidal variations while maintaining adequate vertical resolution in the
surface layer, or areas such as tidal flats which periodically wet and dry. An extreme example of
the application of wetting and drying would be a bore propagating down a dry channel.

SHOC facilitates wetting and drying by checking whether the surface elevation is greater than the
bottom depth, 77 > H. If the condition /7 < H arises in a certain cell then flow is disallowed in that

cell for the 2D mode. The flow of control regarding wetting and drying for u; velocity is illustrated
in Figure 8.1

Figure 8.1 : Wetting and Drying for u; Velocity
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SHOC allows for variable bottom topography, so the cell thickness at coordinates corresponding
to the bottom, kb, may vary. The bottom depth at a velocity face is then the maximum of the
depths of the cells either side of the face. Note that H(i,j) is negative so this maximum equates to
the shallower of the bottom depths. The surface elevation at the face is the maximum of cell
centered surface elevation either side of the face. Note again that if elevation drops below mean
sea level then this will be negative. After the 3D velocities are calculated then the 2D mode is
performed on all wet cells; the values of n, U; and U, in dry water columns remain unchanged
from the previous time-step. When velocity adjustment occurs (ensuring the vertical integral of 3D
velocities are equal to 2D velocities) dry cell faces are again identified and the velocities in the
entire water column are set to zero on these faces. Velocities are also set to zero for wet cell

faces above the surface cell. Finally, if the elevation has risen at the end of the 2D mode such
that I7:1'1 > Ziyi ” l7f11 (i.e. previously dry cells become wet) then the velocity of the newly wetted

cells are set to that of the surface velocity before wetting. These procedures merely constitute
housekeeping to ensure dry cells are associated with zero velocity; wetting and drying is
essentially only possible through the formulation of the pressure gradient term which allows the
surface to occupy different layers in adjacent cells (section 2.3).

An example of wetting and drying is illustrated in Fig. 8.2 where an initially dry channel is
subjected to a non-zero velocity (1 ms™) on the right boundary resulting in the propagation of a
bore along the channel. The depth (D) and length (L) of the bore is in agreement with theory

(L=gD?*/2C u?).

Figure 8.2 : Propagation of a bore along a dry channel.
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9. Thermodynamics

9.1 Heat Flux Components

The heat flux formulation available in SHOC uses an advanced bulk parameterisation for sensible
and latent heat fluxes, enhanced longwave formulation and the short wave component is
calculated or supplied via time-series file. The heat flux formulation is easily accommodated using
standard meteorological measurements as input. The net heat flux is computed as the sum of the
components then applied as the surface boundary condition in the vertical diffusion equation
(eqn. 2.5.2). Heat is input and mixed through the water column simultaneously using this
approach due to the implicit nature of the vertical diffusion equation, hence avoiding undesirable
skin effects when layers are thin. The components of the heat flux are described in turn.

9.1.1 Shortwave Radiation

The clear sky instantaneous short wave radiation is computed via (Zillman, 1972) :
S, = S sin*(h)((sin(h) + 2.7).10"%e, +1.085sin(h) + 0.1)™ 9.1.1

where Sg is the solar beam irradiance in free space (Wm™), with a mean of 1380 Wm™ (the solar
constant). The magnitude of Sg varies in a sinusoidal manner during the year as the distance
between sun and earth changes. These variations constitute no more than 3.5% of the mean
value. The variable h is the solar elevation (Deg) which is calculated via:

sin(h) = singsind + cosg coso cost 9.1.2

where @ is the latitude, & is the solar declination and t is the hour angle of the sun. The solar
declination is given by (Oberhuber, 1988):
0 =0.006918+ 0.07025%in 8 — 0.39991Z0s/
+0.00090%in(23) — 0.00675&0s@3) 9.1.3
+0.00148sin(38) - 0.002697c0sBA)

where f is the Julian day. The clear sky irradiance is corrected for cloud cover (Reed, 1977):
Sgc = Sg (1-062C +0.001%h,) 9.1.4

where C is the cloud cover in tenths and h, is the noon solar elevation. Finally the cloudy sky
irradiance is corrrected for the amount of radiation reflected at the earth surface using:

Q =S,.1-a) 9.15

where a is the albedo at the surface as a function of solar elevation and cloud (e.g. Zillman, 1972,
Figure 3.2).

Alternatively, short wave radiation may be input to the sea surface is via file input (Wm'z), subject
to the albedo correction 9.1.5. Short wave radiation may be partially or completely excluded from
the surface net heat flux boundary condition, and distributed with depth through the water column.
The degree to which short wave radiation is excluded from the net heat flux is controlled by the
transmission coefficient and is due to the preferential absorption of longer wavelengths of short
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wave radiation within the first few meters (e.g. Simpson and Dickey, 1981). Transmission varies
from approximately 0.42 for Jerlov class | water to 0.22 for class Il water. The short wave
radiation at any layer, k, is given by:

Q. =RQ, exp(772) 9.1.6

where R; is the transmission coefficient and n is the extinction coefficient (~0.2 m™; this is the
reciprocal of the e-folding length,  (m), used by Simpson and Dickey (1981), Table 1). Change in
temperature within the water column is proportional to the divergence of short wave radiation:

AT, = M(Q,., - Q) (¢, 002) 0.1.7

where Az (m) is the thickness of the surface layer, p (kgm™®) is the density in the layer and c,
(~3990 Jkg™'K™) is the specific heat of water. This temperature change is the result of a heat input
and must be added to the water temperature in the layer k.

Alternatively the dual extinction parameterization of Paulson and Simpson (1977) may be used
where the extinction coefficient for the surface 10m or so, ni, corresponds to attenuation of the
longer wavelengths and the extinction coefficient n, corresponds to attenuation of the shorter
wavelengths at depth. The fraction R; determines the partitioning between surface and deep
attenuation.

Q. =Q |R, exptn,2) + L~ R, ) exp(17,2)| 9.1.8

9.1.2 Longwave Radiation

The net long wave radiation at the water surface is given by the sum of the downward longwave
input from the atmosphere, the amount of the downward longwave that is reflected upwards and
the upward longwave radiation emitted from the surface. For clear skies this is given by (Zillman
1972, egn. 3.1):

R =L, -(@Q-¢&)L, —&0T) 9.1.8

where where o = 5.67x10% Wm?K™ is Stefan’s constant, Ts (°K) is the temperature of the
surface, &5 (~0.985) is the emissivity of the water surface, and L, is given by;

L, =&,0T) 9.1.9

where with T, is the air temperature (°C) and ¢, is the emissivity of the atmosphere given by
(Swinbank, 1963, eqn. 3.8):

g, = 092x10°T? 9.1.10

Note that Ts in egn. 9.1.6 is actually the true radiative temperature of the sea surface, which may
differ from the measured SST, but for practical purposes are assumed to be identical. Also, & is
equivalent to 1-(longwave albedo) : grey body approximation. Equation 9.1.6 may be then
approximated with negligible error (Zillman, 1972, eqn. 3.4 (a)) by:

R =0T} e, -1) -4e,0T (T, -T) 9.1.11

The clear sky longwave radiation is corrected for cloud cover via (Budyko, 1963, egn. 3.9):
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Q, =R (1- AC) 9.1.12

where B=0.63 at latitude 30°S and C is the fractional cloud cover.

9.1.3 Sensible and Latent Heat Fluxes

The sensible heat flux is derived via the bulk formulation (Gill, 1982, p30):

Qn = P.C,cyW(T, ~T,) = p,c,WT, 9.1.13
where p, is the density of air (~1.22 kgm'3), Cp is the specific heat of air at constant pressure
(~1005 Jkg'K™ in the absence of humidity effects), c, is the bulk transfer coefficient (Stanton
number), W is the windspeed (ms™) at 10m height and T, is the air temperature at 10m height.
The turbulent fluctuations of wind and air temperature are w’ and T,. The air temperature should
be supplied via file, if no data is present a default value of 15°C is used. Qy is also an upward flux

and must be subtracted from the surface layer temperature. An equivalent formulation is used for
the latent heat flux:

QE = paLvCEW(qs - qa) 9.1.14

where ce is the bulk transfer coefficient for latent heat (Dalton Number), gs (kgkg™) is the specific
humidity at the sea surface, ga is the specific humidity at the reference height (10m) and L, (Jkg™)
is the latent heat of vaporization given by (Gill, 1982, p607):

L, = 25008x10° - 23x10°T 9.1.15
where T is the surface water temperature (°C) or by;

L, = 4186859731~ 056529, ) x10° 9.1.16

The density of moist air may be more accurately represented by:

3.4838x10°P,
P, = 9.1.17
27316+T,
where P, is the atmospheric pressure (Pa) and T, (°C) is the virtual temperature:
T, =[(T, +27316)(1+0.6089,)] - 27316 9.1.18
Furthermore, the specific heat at constant pressure is given for moist air by:
¢, =1.004(1+ 09q,) x10° 9.1.19

The specific humidity is the mass of water vapour in a unit mass of moist air and is given by:
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0.622,
q=——7"7"—— 9.1.20
(P, —0.378,)
The vapour pressure, e, (Hpa), is estimated by:
€ =6 - (6.6><10_4 @+ 1.5><10_3TW)(T61 -T,)P, 9.1.21

with P, in (HPa) and T,, (°C) is the wet bulb temperature at the standard height. The saturation
vapour pressure, es (HPa), is given by:

e =T, (T, (T, (T, (T,(T,6.136821x 107
+3.03124x10°°) + 2.650648<10™*) 9.1.22
+1.428946x1072) + 0.4436519 + 6.1078

Saturation vapour pressure is corrected for salinity with:
e, = ¢e,(1-0.000535) 9.1.23

where S is the salinity. Alternatively the vapour pressure may be calculated from the dew point
temperature:

e, = P,a® x 10 ot et 9.1.24

where &, = 37316/(T,,, +27316) where T, is the dew point temperature (°C), b;=-3.49149,
b,=11.344, b;=5.02808, b,=-7.90298, bs=8.1328x10°, bs=-1.3816x10;, a,=a;-1, az=1-1/a,,
a, = (10**) -1 and a, = (L0**) —1 and P, in (HPa).

The specific humidity over water is calculated using 9.1.20 with e,=es from 9.1.22 where it is

assumed the wet bulb temperature = SST and the air is 100% saturated, thus e, in this case
represents the maximum amount of water the air can accommodate.

The bulk transfer coefficients, cg and cy, have been estimated in numerous studies. Blanc (1985)
reviews ten studies providing estimates of these coefficients and concludes that each scheme
provided different results when applied to the same data, highlighting the uncertainty inherent in
the bulk method. The discrepancies were attributed to the use of indirect flux measurements in
the studies, increased error in flux measurement at low wind-speed and lack of data at high
windspeeds. The bulk scheme employed in SHOC is that of Kondo (1975), chosen for the wide
range of air-sea temperature differences (20°C) and wind-speeds (0.3 to 50 ms™) the scheme is
applicable to. Bulk parameters are also corrected for stability (i.e. situations where the sea is
warmer than the air contributing enhanced air-sea exchange or where the sea is cooler than the
air suppressing exchange). The bulk transfer coefficients derived by Kondo (1975) are given by:

Co1o = (85 + W) x107
Cuo = (8, + W + ¢, (W _8)2) x10°° 9.1.25
Cero = (8, + WG +c (W - 8)2) x10°°

where cp is the drag coefficient, W (ms™) is the windspeed at 10m height and the coefficients are
all applicable to a standard height of 10m. The constants a,b,c and p are given by:
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Table 9.1 (a) : Bulk Transfer Coefficient Parameters

Wio ag an Ae by b, be
03-22 0 0 0 1.08 1.185 1.23
22-5 0.771 0.927 0.969 0.0858 0.0546 0.0521
5-8 0.867 1.15 1.18 0.0667 0.01 0.01
8-25 1.2 1.17 1.196 0.025 0.0075 0.008
25-50 0 1.652 0.073 0.073 -0.017 -0.016
Table 9.1 (b) : Bulk Transfer Coefficient Parameters
WlO Ch Ce Pd Pn Pe
03-22 0 0 -0.15 -0.157 -0.16
22-5 0 0 1 1 1
5-8 0 0 1 1 1
8-25 -0.00045 -0.0004 1 1 1
25-50 0 0 1 1 1
The bulk coefficients at 10m height can be scaled to any reference height z, by:
— 12|, ~-05 -2
Cp, =K [kCDlO h ln(ZIO/Zr)]
— L~05[},~05 ~-1 -1
Chz = kCDz [kCDlOCHIO + In(zr /210)] 9.1.26

— 1,~05]|,~05 ~-1 -1
Ce, = kCDz [kCDlocElo + In(zr / 210)]

where k=0.4 is the von Karman constant and z;,=10m. Wind is scaled to the reference height by:

W, =W, In(%) In(22) 9.1.27
Z, 2
where
z, = exp(In(z,,) — kegos 9.1.28
The stability parameter at height z, is defined as:
s=s, & where s, = (T, -T,)W,*(1+ Iogm(@))‘2 9.1.29
|s| + 001 z,

Kondo (1975) suggests that the influence of water vapour upon stability should be taken into
account, and (Ts-Tg) in eqn. 9.1.24 should be replaced with :

TS _Ta - (Ts _Ta) + 061‘9((15 - Q) 9.1.30
where 8 = T+I'z (°C) is the potential temperature with [=0.0098 °Cm™ the adiabatic lapse rate.

Under for stable conditions (T, > Ts) :

c=c,(0.1+ 003s+ 09exp(4.8s)) for
c=0 forS<-33

-3.3<s<0
9.1.31
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where ¢ can be cp, ¢y or ce. For unstable conditions (T, < Ts) :
c=c,(1+ 063%) 9.1.32

The bulk transfer coefficients vary from zero for stable, low wind-speed conditions to > 2x107 for
unstable, low wind-speed conditions. For high wind-speed conditions the bulk parameters
converge towards ~1.25x107? irrespective of stability conditions.

The net heat flux, Qy (Wm™) is then:

QN = Q| + QL + QH + QE 9.1.33
and the surface heat flux applied as the surface boundary condition, Hr (ms™K) in Eqn. 2.5.2 is:
H; = Q_N 9.1.34
P

where ¢,=4x10° (Jkg'K™) is the specific heat of water at constant volume and p (kgm™) is the
water density.

The bulk schemes of Large and Pond (1982), Kitaigorodskii et al (1973) and Masagutov (1981)
are also coded into SHOC; the reader is referred to these references for details or the study of
Blanc (1985) in which a comparison is made.

9.1.4 Advection Correction

Air temperature and humidity measurements are typically taken at terrestrial sites, which may
differ significantly from measurements taken over water. Under offshore wind conditions, air
temperature and humidity transfer across the air-sea interface via turbulent exchange may cause
these variables to converge towards the sea surface values with increasing distance offshore.
This results in smaller air-sea gradients, which consequently reduces the sensible and latent heat
fluxes. Assuming that the turbulent exchange of heat and water vapour is restricted to the vertical
direction, then the steady state advection diffusion equation (for air temperature, T, in this case)
is written as:

2
w %Ta =K, %T; 9.1.35
n n

where n is the direction normal to the coast, W is the windspeed and K, is the vertical eddy
diffusivity in the boundary layer above the sea surface (assumed to be independent of height).
Boundary conditions are:

T,=T, onz=0 when n>0
T,=T, atn=0,z>0

9.1.36

where T, is the air temperature at the coast. The solution to 9.1.35 is given as (Sutton, 1953):

zw
J4K,n

T, =T, +(T, - T,)ef 9.1.37
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— L.

which is approximated by (Hastings, 1955):

erf (x) =1-(ay +ay’ +a,° +a,/* +ay’)e™ 9.1.39

with y =1/(1+ pXx), p=0.3275911, a,=0.254829592, a,=-0.284496736, a;=1.421413741, a,=-

1.453152027 and as=1.061405429.
The turbulent flux of air temperature (or humidity) is related to the mean vertical gradient, i.e.

wT, =-K, o 9.1.40
0z
From Eqgn. 9.1.13 and Eqn. 9.1.40 it follows that:
! a-ITa Ta _TS
wWT, =-c ,W(T, -T,) =-K, 7 =-K, " 9.1.41

Therefore K,~cyWAz (m?s™) for temperature and K,~ceWAz (m?s™) for water vapour where Az is
the height between the sea surface and the reference level. Using the vertical diffusivity from
Eqgn. 9.1.41 the temperature/humidity at any distance n offshore is calculated via Eqn. 9.1.37 to
provide air temperatures and humidities over water to be input into the bulk formulae. In practice
this procedure is performed if the wind is offshore and terrestrial measurements are expected to
differ significantly from measurements over water.

9.1.5 Precipitation

The change in the surface temperature due to rain entering the surface layer (at a temperature
equivalent to the air temperature) is given by:

AT, =T,AtP/ Az 9.1.42

where P is the precipitation rate (ms™).

9.2 Surface forcing
A simple method of implementing a heatflux is by relaxation of the surface layer temperature to

some prescribed, possibly time varying field, e.g. Haney (1971). The relaxation used in this
method is of the form:

T =T, +(Ty - Ty)e ™ 9.2.1

Where T, is the surface temperature, Tp is the prescribed temperature and T¢ is the relaxation
time constant. Note that this implies that long time constants result in strong relaxation to the

95



SHOC Scientific Manual

prescribed data, and short time constants result in weak relaxation, hence small deviations from
To.

9.3 Prescribed heat flux

The net heat flux applied as the surface boundary condition may be applied directly in egn. 2.5.2
via time-series file. The net heat fluxes are supplied in Wm™ in the time-series file and must
undergo the scaling outlined in eqn. 9.1.28 before being applied as the surface boundary
condition. An input of heat (leading to warming of the sea surface) is given a positive sign by
convention.

9.4 Inverse estimation

Neglecting advective and horizontal diffusive effects, the conservation equation for heat may be
vertically integrated from some depth —h to the undisturbed surface:

toT 0
O 7= [wTd 4,
Iat z Ih z 9.4.1

-h

where —WT' is the vertical flux of heat. Assuming that the depth —h is invariant with time and
there exists no flux of heat through this depth (i.e. —h is the mixed layer depth), then egn. 9.4.1
may be simplified to:

0
iJ'sz: H, =Ou 9.4.2
ot =, c,0

Therefore, assuming that T is well mixed throughout the depth h (i.e. independent of depth over
the range 0 to —h), the temperature change, AT, over a time period At throughout depth h due to
the heat flux Qy is given by eqgn. 9.1.1, where h=Az. Alternatively, if a temperature change is
known then the amount of heat required to achieve this change over a time period At may be
calculated:

_ ATe,ph
At

Qy 9.4.3

Using AT=Tmog-Tobs Where Tq is the modelled SST and T, is an observed SST, Eqn. 9.4.3
forms the basis of the inverse heat flux calculation. This may be used a first estimate of the
surface heat flux given a time-series of SST observations. Obviously the time-scale At has great
impact on the calculated flux, since a larger flux is required to converge measured and modelled
SST in a shorter time. Generally At is of the order of the sampling frequency of the observations.

9.5 Salt Flux

A salt (or freshwater flux), Hs (ms™psu) may be applied as a surface boundary condition to the
salinity vertical diffusion equation 2.5.2. The salt flux is given simply by:

H,=S,(E-P) 9.5.1
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where S, is the surface salinity expressed as a fraction (e.g. 35 psu = 0.035), E is the evaporation
(ms™) and P is the precipitation (ms'lf (e.g. Mellor 1996, Eqgn 3.3). E and P are input into SHOC
as timeseries files in units of mm day™.

Note that the latent heat of evaporation, Eqn 9.1.14, may be used to estimate the evaporation
rate by dividing by the latent heat of vaporization;

Qe
L.o

vIZwW

E= (ms™) 9.5.2

where Qg (Wm™) is the latent heat of evaporation and p, ~ 999 kgm™ is the density of fresh
water.
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10. Waves.

The influence of waves is handled via the wave module, and may be coupled to the
hydrodynamics. This coupling includes the forcing of 2D velocity by tangential radiation stresses
and enhanced drag due to wave enhanced bottom friction.

10.1 Tangential Radiation Stresses

The impact of waves on currents has been included in SHOC via tangential radiation stresses.
The formulation follows that of Bye (1977a) and is outlined below. Radiation stresses are included
in the 2D mode through the terms:

0S 1T —3 =
R [w?-w?)dz+1gn'" = [uvidz 10.1
ox  0x ox| -, ay|

in the e, direction (for Eqn. 2.6.3), and;

oS, S T 1= —
—a—yx—a—yy:—ai“u'v'dz}—ai[j(v'z—V\/Z)dz+%g/7'2} 10.2
X X X| =, y| =,

in the e, direction (for Egn. 2.6.4), where (u',v’,w’) are the velocity fluctuations due to the orbital
motion of the wave and n’ is the elevation fluctuation due to the wave. The normal components of
radiation stresses, S,, and Sy, generate a setup or setdown, and the tangential components, S,,
or Sy, generate a long-shore circulation. The flow resulting from radiation stresses is simplified to
include the tangential components only adjacent to a solid coast. A further approximation is made
to relate wave refraction to the angle of approach of the wave train to the coastal boundary (see
Bye, 1977a). The tangential radiation stresses are given by (Longuet-Higgins, 1970):

S, =S, =+ga’singcosy 10.3

where a is the wave amplitude and ¢ is the angle of propagation relative to the x-axis. As the
wave refracts on its approach to the coast it is assumed that the angle of incidence at breaking is
proportional to ¢, so that:

1ga’ad

S =S =
Y 4 )2

10.4

where a ~ 0.1 is a refraction coefficient, 0< @ < 71/2 is the angle of the wave train relative to
the coast and & = 1 for eastern/northern coasts and & = -1 for western/southern coasts.

10.2 Wave Amplitude Approximations

The wave module is capable of approximating wave amplitude and period if these quantities are

not explicitly supplied via file input. If a wave period, T (s), only is supplied, the wave amplitude is
approximated first using an estimation for the wavenumber:

er, = fabs(atanhfwn,D)(22)? /(wn,g)  n=123 10.5
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where:

2 2m)2
(#) (#)
—L=, wn, = ., Wn, =wn, +wn, 10.6

VoD g

Then the wavenumber, k (m™), is:

wn, =

kK=wn,, er =er, if er, <er,
k=wn, er,=en if er, 2er 10.7
k=wn, if er;<er

The wave amplitude, a (m), is then given by (Tang and Grimshaw, 1996):

12 42 )ys 2
a=k™ O.\ZA./O.001 ( 9‘2 /lj'l? —A‘ for 282 +72)"* >2m/kT 108
diss T

where W4iss=100 is the wave dissipation constant.
Alternatively, if both wave period and amplitude are not supplied via file input, they may be
estimated using (Toba, 1978):

u?

g

a=05H 10.9

where U, = (/72 + T;, I p,, )" is the air friction velocity, F (m) is the fetch and:
1
~ F 2
H = 0.05{9—2} 10.10
U*

The wave period is given by:

T=64q2%% 10.11
g

Alternative approximations for wave period and amplitude using the wind speed at 10 height (wyo)
are (e.g. Hipsey et al, 2006):

0.0379gF /w2)"?
tanh@)

T= 1.2.2n%tanh(¢) tam{ j $=0833gD/W2)** 1012

2 2\1/2
a:@%tanh@) tan 0.00564gD / w,) ,  @=053gD/w;)** 1013
2 g tanh@)
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Near bottom orbital velocities, u, (ms™), are estimated using:

_ 05a(n/T)

u, = 10.14
®*  sinhkD)
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11. Generic Storm Systems

Wind stress may be applied as a forcing parameter corresponding to the passage of cyclonic or
anticyclonic pressure systems. These systems are defined by a location of the center of the

system (XoYo), radius R, pressure gradient OP/0dn, eccentricity e (0<e<l and
b? = a? (1—ez)where a and b are the major and minor axes of the ellipse respectively) and

rotation ©to a circle of latitude. The wind speed at any point in the domain obeys the gradient
wind equation:

C:—Ei (E)Z +L6_P

2 2 P, On

where f is the Coriolis parameter, r is the distance from the center and p, is the air density. For an
anticyclonic system the pressure gradient is negative. For the system to remain stable it follows
that:

4 0P
r=- 11.2

o, f%0n

If eqn. 11.2 does not hold a wind speed of c=rf/2 is assumed. A pressure gradient distribution is
assumed where 0P/0n =0 at the center of the system with a parabolic distribution from 0<r< r,
and r,<r< R where 0< r;< r,<R. The parabolic distribution is given by:

OP _ 4(0P/on),
. rR r(R-r) r>r>r, 11.3

where (0P /0n)
calculated via:

max 1S @ pre-defined maximum pressure gradient. The wind stress is then

I, = p,CpsC? 11.4

where the wind drag coefficient is given by eqgn. 2.5.5.
The wind stress vector lies on an ellipse with center (Xo,Y,), having an equation:

2 —
(X=%,)"+—=—="—=a 11.4

If a< R then any point (x,y) lies within the radius R and 7, # 0. Let (X' +X,,Y' +Y,) be the

coordinates of point (x,y) rotated about (Xo,Y,) by —0 (i.e. point (x,y) lies on the ellipse passing
through (x',y") rotated by 6, then;

X' =(X=X,)cosf +(y-y,)sind
y' =(y-vy,)cosd—(x-x,)sing

115

and
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— "2 (y,)2
d= (X)-Fa—eﬂ 11.6

is the length of the semi-major axis of the ellipse with center (X,,y,) rotated by 6 passing through
(x,y) (i.e. d is the semi-major axis of the ellipse passing through (x',y’) subject to no rotation) and
if d<R then the wind stress at (x,y) is non-zero. The slope, a, of the tangent to the ellipse at (X,y)

is determined by calculating dy/0X of the ellipse equation in rotated coordinates, i.e.

- (L-€%)|(x- x,)cog 8+ (y - y,) cosgsing| + (y - y,) cosdsind - (x - x, ) sin’ 8
(1-€?)|(x- x,) cosdsing + (y - y,)sin? 8]+ (y - y,) cos’ 8 — (x— x,) cosdsind

11.7
The wind stress vector may then be resolved into its x and y components:
r, =7.CO0sa
0 11.8
Iy, =T Sina

This type of stress formulation was used in Herzfeld and Tomczak (1997) to investigate the wind
stress forcing in an idealized bay with sloping bottom. Typically synopyic weater systems are of
size 3000 — 5000km with maximum pressure gradients ~7x10™* HPa/km (2 HPa in 2.5° (280km)).
An example of the resulting wind stress distribution is given in Figure 11.1.

Figure 11.1 : Example Storm System : R=2000km, (0P /dn) __ =7e™ 6=25° e=0.8
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12. Sparse System

The sparse coordinate system represents the physical grid configuration of the domain as a 1D
vector in memory. Only cells that may potentially contain water are included in this vector; dry
land locations are omitted, generally leading to large savings in memory. The first land location
and bottom sediment layer are included in the sparse grid in order to establish boundary
conditions. These cells are referred to as ghost or phantom points since they are technically not
part of the wet domain. In some situations (e.g. headlands or outside corners) a ghost point may
not be unique and several ghost points occupy the same physical point in space. These points
are referred to as virtual or multiple ghost points, and are easily accounted for in the sparse
matrix since there is no dependence of the organization of the sparse vector on physical space.
Maps are generated which provide the location of the neighbours of a certain sparse point, and
these are used in the finite difference approximations to the equations of motion. The construction
of these maps in the sparse system makes it possible for several cells to have the same
neighbour or several virtual points to map to the same point. Any map is not unique and may be
altered when desired. Vector subscripts can easily be generated to isolate a sub-region (e.g. a
particular layer, all ghost points, all wet cells interior to ghost points, open boundary points) of the
domain. This simplifies the ability to access a certain set of points without having to individually
test the status of the cell. A map also has the ability to act as a vector subscript and behave as a
‘dynamic’ vector subscript; i.e. a vector subscript that may alter itself. These characteristics of the
sparse system can be exploited, especially in a pre-processing stage, to generate very efficient
code that may easily be parallel processed or vectorized.

Issues arise as to how the sparse vector is generated, e.g. map (X,y) space first then z space or
(z,x,y), place wet points first followed by ghost points or keep ghost points with the relevant wet
points etc. These issues may impact on the versatility of the sparse vector (e.g. using 2D maps
as a subset of 3D maps, using vertical maps as neighbors in the sparse vector). SHOC employs
a sparse map where (x,y) locations are included in the vector first, followed by the ghost points for
that layer. This is done on a layer by layer basis, starting with the surface layer. The 2D maps
then become a subset of the 3D maps, and map duplication is avoided.

The SHOC code is written such that there exists no checking of the status of a cell and no
dynamic memory allocation. These operations are performed at an initialisation, or preprocessing,
stage. The preprocessing of cell status requires that vectors are generated which contain
information regarding the sparse locations of cells requiring frequent access, i.e.

1. The points to process at every time-step.

These must be supplied for tracers, x velocity and y velocity since these state variables occupy
different locations on the Arakawa C grid and hence the same cell may contain both land and
water points depending on whether the cell center or face is considered. These vectors contain all
points that may potentially be wet; at every time-step these vectors must be packed to eliminate
cells which have become dry.

2. Ghost points for tracers, x and y velocity.

These sparse locations are used to set the lateral (land) boundary condition. Generally for tracers
this is a no-normal flux (i.e. no-gradient) condition and for velocity may be no-slip, free-slip or
partial-slip. Again vectors are required for each cell face and cell center (3 vectors total). Note
that there exists an additional ghost layer above the surface and below the bottom so as to define
the surface and bottom boundary conditions. These ghost cells are not included in the lateral
ghost vectors but form a subset of the sparse system proper and are accessed via the spatial
maps.

3. Interior points to ghost points.

These sparse locations represent the first interior cell (wet cell) to the ghost points and are
required in order to assign the values at the lateral boundaries.
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4. Open boundary points.

The cells for each open boundary are stored in a vector, which in turn is stored in a data structure
containing all additional data defining that boundary. This would include the boundary condition
type and a pointer to a spatial map that provides interior sparse locations to the open boundary.

Additionally the sparse array is generated at the pre-processing stage and all maps are defined.
These maps are ‘self-pointing’, meaning that a map on a boundary that would map outside the
domain will map to itself. This removes the necessity to test for proximity to the boundary and
invoke alternate practices when higher order numerics are employed near the boundaries. The
maps consist of;

The sparse array is generated by assessing the status of every cell in the Cartesian grid. The cell
status will fall into one of three categories, vis;

1. A cell that may potentially contain water (wet cell)
2. A cell that will never contain water (dry cell)
3. The first dry cell adjacent to a wet cell (ghost cell)

The wet cells can easily be identified on the basis of the value of the bathymetry, i.e. those cells
whose bathymetry value is less than the maximum expected elevation value are considered wet.
Also, any cell below the sea floor is considered dry. The generation of the sparse array therefore
requires two two-dimensional arrays as input. One contains the bathymetry value, where a land
mask value is included. The arrays used in a 3D model must contain vertical discretization, and a
second array, kbot[i][j], should exist containing the k index of the bottom-most vertical layer given
any (i,j) location. These are then used to generate a three-dimensional array, cell(i,j,k), where if
k>kbot[i][j] cell(i,j,k)=0 and if (i,j) corresponds to a land location cell(i,j,k)=0. For all other cells
cell(i,j,k)=wet # 0.

12.1  Counting the wet cells

The first task in generating the sparse grid is to count the number of wet cells. A Cartesian to
sparse map is introduced where every wet cell in the Cartesian grid is given a unique sparse
coordinate, e.g. if (i,j,k) are the Cartesian indicies in the x,y and z directions respectively, and c is
the sparse coordinate, then:

Mapli][i]k] = ¢
The Map is then populated with wet sparse locations;

Loop 1
c=1,
for(k=0; k<zsize; k++)

for(j=0; j<ysize; j++)

for(i=0; i<xsize; i++) {

if(cell (i,j,k) == wet) {
Mapli][j][k] = c;

c++;

}

else
Mapli][i][k] = O;

where xsize, ysize and zsize are the (x,y,z) dimensions of the grid. The order that the sparse
array is filled is arbitrary; here it is chosen to fill the sparse array with locations from horizontal
layers first, for every layer. The sparse array then gets filled with wet points as depicted in Figure
12.1. The number of wet points in each layer and the sparse location of the last wet point in each
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layer is stored to a buffer. These quantities are used at a later stage to insert the ghost cells into
the sparse array.

Figure 12.1 : Mapping of the Cartesian array to the sparse array. Only wet points
(i.e. the cells enclosed by the ellipses) are mapped. Cells are mapped to the
sparse array from the i direction first, followed by the j and k directions. The size
of the sparse array is ssize.
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12.2  Counting the ghost cells

The ghost cells to be represented in the sparse array are then counted. Ghost cells are defined
as in Figure 12.2. The outside corner case requires two ghost cells to represent the wet cells,
since two wet cells have the same adjacent land cell. The identification of an outside corner falls
under the straight edge definition of a ghost cell, and since an outside corner comprises two
straight edges, then two ghost cells are identified. In the case of a headland one cell wide it is
possible for three ghost cells to occupy the same Cartesian location. These ghost cells are
referred to as multiple ghost cells. In the diagonal case, the ghost cell must share the same
Cartesian location with a wet cell. These multiple cells do not present a problem when
constructing the sparse array — multiple cells are simply identified at this stage irrespective of
their position in the Cartesian array and inserted in the sparse array later. Diagonal and inside
corner ghost cells are generally only required if some form of interpolation is required over the
grid (e.g. a semi-Lagrangian scheme is used to solve for momentum or tracer advection, or 2-way
nesting is performed where a coarse grid needs to be populated). In order to prescribe the bottom
boundary conditions, a ‘sediment’ ghost layer is included at the end of the sparse array. The
number of these sediment cells is equal to the number of wet cells in the surface layer, denoted
num_sed.
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Figure 12.2 : Classification of ghost cells. Cells are placed at the cell center here;
note that the land boundary passes through the cell faces.

® = wetcell
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Ghost cells are counted according to:

Loop 2
num_gc=0;
for(k=0; k<zsize; k++)
for(j=0; j<ysize; j++)
for(i=0; i<xsize; i++) {
¢ = Mapli][i][k];
if(se_oc(c))num_gc++;
if(di_ic(c))num_gc++;

where num_gc is the number of ghost cells, se_oc(c) represents the straight edge/outside corner
ghost cell scenario and di_ic(c) represents the diagonal/inside corner ghost cell scenario
illustrated in Figure 12.2 and defined below.

Denoting :

¢ = Mapl[i][j][K]

xpl = Map[i+1][j][K]
xm1 = Mapl[i-1][jl[K]
yp1 = Map(i[[i+1][K]
ym1 = Mapli][j-1][K]

then se_oc(c) is defined as non-zero if:
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West straight edges :
East straight edges :

South straight edges :
North straight edges :

South-west outside corners :
South-east outside corners :
North-west outside corners :
North-east outside corners :
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c #0&& xml ==
c #0&&xpl ==
c #0&&yml ==
c #0&&ypl ==

c 20 &&xml1l!=0&&yml # 0 && Map[i-1][j-1][K] ==
c #0&&xpl!=0&&yml # 0 && Map[i+1][j-1][K] ==
c #0&& xml!=0&&ypl # 0 && Map[i-1][j+1][K] ==
c #0&&xpl!'=0&&ypl # 0 && Map[i+1][j+1][K] ==

And di_ic(c) is defined as non-zero if:

South-west diagonals :
South-east diagonals :
North-west diagonals :
North-east diagonals :

South-west inside corners :
South-east inside corners :
North-west inside corners :
North-east inside corners :

¢ #0 && xml ==0 && yml == 0 && Map[i-1][j-1][K]
c #0 && xpl == 0 && ym1 == 0 && Map[i+1][j-1][K]
¢ #0 && xml == 0 && ypl == 0 && Map][i-1][j+1][K]
¢ 70 && xpl == 0 && ypl == 0 && Mapli+1][j+1][K]

¢ #0 && xml ==0 && ym1 == 0 && Map[i-1][j-1][K] ==
¢ #0 && xpl == 0 && ym1 == 0 && Map][i+1][j-1][K] ==
¢ #0 && xml == 0 && ypl == 0 && Map][i-1][j+1][K] ==
¢ #0 && xpl == 0 && ypl == 0 && Map[i+1][j+1][k] ==

£
Z
Z
#

0
0
0
0

The routines se_oc() and di_ic() should return a unique code for each situation. It is useful for
these codes to be powers of 2 so that several configurations can be represented in the same
returned code. For example, setting:

SW_IC=1, SE_IC=2, NW_IC=4, NW_IC=8

Then the statement:

if(di_ic(c) & NW_IC)

indicates that the sparse cell ¢ constitutes a north west inside corner.

12.3  Re-ordering the sparse coordinates

Once the number of ghost cells has been established, the sparse array is reordered so that for
each layer the wet cells sequentially precede the ghost cells (see Figure 12.3). This re-
arrangement is not necessary, but allows the sparse coordinates for the 2D mode to become a
subset of the 3D sparse array, hence any 2D sparse arrays or maps need not be explicitly
generated. The number of wet points in each layer and the sparse location of the last wet point in
each layer stored earlier are used to re-define the mapping array, Map[][][], so that wet cells are
assigned to the re-ordered sparse locations. Cells corresponding to ghost cells in Map[] remain
zero valued at this stage. The sparse location of the last wet cell in each layer is re-calculated
and stored in an array, e.g. with reference to Figure 12.3;

last wet[1] =21
last_wet[2] = 58

Generally : last_wet[k] = cc
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Figure 12.3 : Re-ordering of the sparse array. The wet and ghost cells in the
Cartesian grid are numbered with their corresponding sparse array coordinate.
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12.4  Wet — wet cell spatial maps

At this stage the sparse array is complete, and the spatial maps which define the sparse locations
of any cell's neighbours in Cartesian space must be established. For wet cells that map to other
wet cells, these maps are defined as;

xp1(c) = Map[i+1][j][K]
xm1(c) = Map[i-1][jI[k]
yp1(c) = Maplil[i+1][k]
ymi(c) = Map[il[i-1][K]
zp1(c) = Mapl[i][j][k+1]
zm1(c) = Mapli][j][k-1]

These maps are initialised to map to themselves, i.e. xpl(c) = c, c=1,ssize. Any cell which is not
subsequently assigned an alternate sparse coordinate will remain ‘self-mapping’, e.g. with
reference to Figure 3.3, xm1[33] = 33 or xp1[34] = 34. This practice effectively sets a no-gradient
condition beyond the limits of the domain and allows higher order schemes to be used at the
boundaries without having to test if there are enough wet cells present to accommodate the
scheme.

The spatial maps of wet cells that map to other wet cells are easily established, e.g;

108



SHOC Scientific Manual

Loop 3
for(k=0; k<zsize; k++)
for(j=0; j<ysize; j++)
for(i=0; i<xsize; i++) {
¢ = Mapl[i][i][K];
if(c = 0 && Map[neighbour] = 0) {
wet_wet_map(c) = Map[neighbour];
}
}

where wet_wet_map(c) is the relevant spatial map that maps the wet cell to another wet cell and
Map[neighbour] is the value of Map[][][] one cell in any direction (e.g. Map[i+1][j][k], Map[i][j-1][k],
Mapli][jl[k+1] etc.).

12.5 Wet - ghost cell spatial maps

Next the spatial maps for wet cells which map to ghost cells and ghost cells which map to wet
cells are assigned. Wet cells corresponding to diagonals, straight edges, outside/inside corners
are identified in Map[] on the basis of their neighbour’s value (zero = ghost, non-zero = wet) as
illustrated in Figure 12.2. For each layer, a ghost cell counter is initialised to cc = last_wet[k]+1,
then looping through the grid in the correct order, when a wet cell is identified neighbouring a
ghost cell, the relevant maps are assigned to cc and cc is incremented. This process will capture
all the straight edge and outside corner ghost - wet cell maps.

At this stage four new arrays are introduced which are referred to as the corner arrays
(sw_clil[lk], se_clilfjlk], nw_c[i][jl[k] and ne_c[i][j][k]). These arrays are three dimensional arrays
covering the entire Cartesian grid and are used to store ghost cell sparse locations for inside
corners and diagonals. There must exist four of these arrays since it is possible for a Cartesian
location to be part of multiple inside corners (a maximum of four, e.g. Figure 12.4). The sparse
coordinates in the corner arrays are used to establish the ghost — ghost spatial maps involving
inside corners and diagonals at a later stage. These arrays are initialised to zero.

Figure 12.4 : Multiple ghost cells at inside corners.

Loop 4
for(k=0; k<zsize; k++)
cc = last_wet[k] + 1;
for(j=0; j<ysize; j++)
for(i=0; i<xsize; i++) {
¢ = Map(il[i][k];
if(c 1= 0 && se_oc(c) ) {
wet_ghost_map(c) = cc;
ghost_wet_map(cc) = c;
if(Map[orthogonal][k] != O)orthogonal_ghost_wet_map(cc) = Map[orthogonal][k];
cC++;
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}
if(c '=0 and di_ic(c) ) {
corner i][j][K] = cc;
cCc++;
}
}

where wet_ghost_map(c) is the relevant spatial map that maps the wet cell to the ghost cell and
ghost_wet_map(c) is the relevant spatial map that maps the ghost cell to the wet cell. With
reference to Figure 12.3, examples of these maps are:

wet_ghost_map : xm1[9] = 35 or xp1[8] = 34
ghost_wet_map : xp1[33] =4 or xm1[30] =3

Note that these loops are written in condensed form, and should be expanded to test the
edges/corners/diagonals for each compass direction. Hence corner[][][] refers to each individual
corner array sw_c[l[lll, se_c[][l[] etc. depending on whether di_ic() is true for that particular
corner/diagonal.

If a straight edge map exists that is part of an outside corner, then an additional map from the
ghost cell to the wet cell must be established in a direction orthogonal to the initial straight edge
map (i.e. orthogonal_ghost_wet_map(cc) above). In this case Map[orthogonal][k] denoted above
represents the sparse coordinate of the neighbouring wet cell to the outside corner ghost cell in a
direction orthogonal to the original straight edge map. This is illustrated in Figure 12.5 for a
bottom right outside corner.

Figure 12.5 : Spatial maps from bottom right outside corners.

xp1[3] = 30 and xm1[30] = 3 with the additional y direction map yp1[30] = 8
with ¢ = 3, cc = 30, Map[orthogonal][1] = 8
wet_ghost_map = xp1, ghost_wet_map = xm1 and
orthogonal_ghost_wet_map = yp1.

ym1[8] = 31 and yp1[31] = 8 with the additional x direction map xm1[31] = 3
with ¢ = 8, cc = 31, Map[orthogonal][1] = 3.
wet_ghost_map = ym1, ghost_wet_map = ypl and
orthogonal_ghost_wet_map = xm1.
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Note that the additional map from the outside corner ghost cell only maps one way to the wet cell;
the reverse map from the wet cell maps to the other multiple ghost cell constituting the outside
corner and is established via a straight edge map in the orthogonal direction.

All ghost coordinates are now defined in terms of their position relative to their neighbours; the
straight edge/outside corner ghost cells are defined via the wet — ghost spatial maps and the
diagonal/inside corner ghost cells are stored in the corner arrays.

12.6  Ghost — ghost cell spatial maps : straight edg  es and outside corners

The maps from ghost cells to other ghost cells must now be assigned to complete the spatial
maps.

Straight edges and outside corner ghost cells cannot be directly accessed via an (i,j,K)
coordinate, but only accessed via a wet_ghost map. In this case a wet cells is checked to see if
it's neighbour is a dry ghost cell. If so, then the map from this ghost cell to other neighbouring
ghost cells (if any exist) is made by approaching the neighboring ghost cells via their
corresponding wet cell. This process is illustrated in Figure 12.6. Here a wet cell is identified at
sparse coordinate 3, i.e. (i,j,k) coordinates exist where ¢ = Mapli][jl[k] = 3. In addition, Mapli-
1][j][K] = 2 is also wet. The wet ghost map established in Loop 4 is used to get the sparse location
of the ghost cell associated with sparse coordinate 3, i.e. cc = yml1(c) = 25. The maps from cell
coordinate 25 to other ghost cells (viz. ghost cell 24) is established via:

If c =3 and cc = 25 : xm1[cc] = ym1[Map[i-1][j][k] = ym1[2] = 24
If c =8 and cc = 34 : yplcc] = xpl[Map][i][j+1][K]] = xp1[9] = 36

Figure 12.6 : Ghost — ghost cell maps for straight edges and outside corners.

This approach is favoured in preference to using an equivalent array to corner[][][] to store
straight edge/outside corner ghost cell locations due to the fact that multiple ghost cells on
outside corners will result in non-uniqgue ghost cell locations for any (i,j,k) outside corner
Cartesian location.

The ghost_ghost mapping for straight edges and outside corners is formalized below.
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Loop 5
for(k=0; k<zsize; k++)
for(j=0; j<ysize; j++)
for(i=0; i<xsize; i++) {
¢ = Mapl[i][i][K];
if(c '=0and se_oc(c) ) {
cc = wet_ghost_map(c);
ghost_ghost_map(cc) = wet_ghost_map(Map[neighbour]);
}
}

12.7  Ghost — ghost cell spatial maps : diagonals an  d inside corners

In order to retrieve the sparse coordinates of ghost cells, the corner[] arrays must be used. Inside
corners are defined as in Figure 12.2, where the diagonal cell from a wet cell is dry and the
neighbours in the x and y directions are also dry. The sparse locations of the ghost cells
neighbouring the inside corner cell can be obtained via a wet_ghost map established in Loop 4.
The relevant spatial maps from these ghost cell locations to the inside corner is defined as the
value of corner[][][] array at the (i,j,k) Cartesian location of the inside corner. This same strategy is
applied to ghost_ghost maps at diagonal ghost cells. This process is illustrated in Figure 12.7 and
Loop 6. Here a wet cell is identified at sparse coordinate 3, i.e. (i,j,k) coordinates exist where ¢ =
Map[i][illk] = 3. In addition, Map[i+1][jl[k], Map][i][j-1][k] and Map][i+1][j-1][k] are dry (i.e. equal to
zero). The wet ghost map established in Loop 4 is used to get the sparse location of the ghost
cell associated with sparse coordinate 3, i.e. cc = ym1(c) = 25. The maps from cell coordinate 25
to the inside corner (viz. ghost cell 26) is established via:

If c =3 and cc = 25 : xplcc] = se_c[i+1][j-1][k] = 26

If c = 3 and cc = 30 : ym1l[cc] = se_c[i+1][j-1][K] = 26

If c =3 and cc = 25 : xml[se_c[i+1][j-1][K]] = ym1[c] = 25
If c =3 and cc = 30 : ypl[se_c[i+1][j-1][K]] = xpl[c] = 30

Figure 12.7 : Maps from straight edges and outside corners to inside corners

Loop 6
for(k=0; k<zsize; k++)
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for(j=0; j<ysize; j++)
for(i=0; i<xsize; i++) {
¢ = Mapli][i][k];
if(c '=0 and di_ic(c)) {
cc = wet_ghost_map(c);
ghost_ghost_map1(cc) = corner[diagonal];
ghost_ghost_map?2(corner[diagonal]) = cc;
}
}

where corner[diagonal] is the value of corner[][][] diagonally opposite cell (i,j,k) (e.g. se_cli+1][j-
1][K], ne_c[i+1][j+1][k], nw_c[i-1][j+1][k+1] or sw_c[i-1][j-1][K]). Again the corner[] array used (se_c,
sw_c etc.) should depend on the code returned by di_ic(), i.e. the above code segment should be
expanded to test every compass orientation of corners/diagonals. Here ghost_ghost_mapl maps
to the inside corner and ghost_ghost_map2 maps from the inside corner.

12.8  Vertical maps

Spatial maps in the vertical direction are straightforwardly established. For wet_wet spatial maps,
this becomes:

c=Mapl[i]{i][k];
if(c 1= 0) {
zp1(c) = Maplil[j][k+1];
zm1(c) = Mapl[il[j][k-1];

For ghost_ghost vertical spatial maps on inside corners and diagonals the corner[] array is used:

c=Mapl[i][j][k];
if(c '= 0 and di_ic(c) == 0) {
cc = corner i][jI[k];
zpl(cc) = corner[i][j][k+1];
zm1(cc) = corner i][jl[k-1];
}

For ghost_ghost spatial maps on straight edges and outside corners the ghost cells are again
defined via the wet cells, e.g;

c=Mapl[i][j][k];
if(c '=0and se_oc(c) == 0) {
cc = wet_ghost_map(c);
zpl(cc) = wet_ghost_map(Mapli][j][k+1]);
zm1(cc) = wet_ghost_map(Mapli][jl[k-1]);
}

12.9  Sediment maps

Vertical maps to the sediment ghost cells must be established to complete the sparse mapping
functions. These are easily established given the vertical coordinate of the bottom cell in the
water column, kbot[i][j]. Note that the sediment ghost cells lie at the very end of the sparse array.
There must exist separate sediment layer maps for tracers, ul and u2 velocities since the
sediment may fall on different layers depending on whether the cell face or center is considered
(see Figure 12.8).
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Figure 12.8 : Side view example of sediment locations corresponding to a given
water column at (i,j). Cell face sediment locations differ to cell center sediment

locations.
Column (i,j)

Velocity cells in
column (i,j)

Layer k+1 Tracer cells in
column (i,j)
Velocity sediment

Layer k cell = (i,j,k)
Tracer sediment
cell = (i,j,k-1)
Layer k-1

Loop 7
cC = ssize —num_sed + 1;
for(j=0; j<ysize; j++)
for(i=0; i<xsize; i++) {
k = kbot[il[j];

¢ = Map[i][i][K];
if(not a solid cell) {

zm1l]c] = cc;
zplfcc] =c;
cC++;

}
}

12.10 Lateral boundary vectors

A vector containing all the ghost cell locations in the sparse array is useful to generate. This
vector has size nhum_gc and is easily filled in Loop 4. In addition, an array may be established
which contains the nearest wet neighbour to the boundary cells. This is useful for establishing no-
flux boundary conditions across the boundary. If bca[] is the ghost vector, or boundary cell array,
and bin[] is an array of wet neighbours to bca[], then Loop 4 may be modified:

Loop 8
lc=1;
for(k=0; k<zsize; k++)
cc = last_wet[k] + 1;
for(j=0; j<ysize; j++)
for(i=0; i<xsize; i++) {
¢ = Map[i][i]K];
if(c =0 && se_oc(c) ) {

bca[lc] = cc;
bin[lc] = c;
lc++;
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wet_ghost_map(c) = cc;

ghost_wet_map(cc) = c;

if(Map[orthogonal][k] != O)orthogonal_ghost_wet_map(cc) = Map[orthogonal]k];
cCc++;

}

if(c =0 and di_ic(c) ) {
bcallc] = cc;
bin[Ic] = c;
lc++;
corner]i][jl[K] = cc;
cC++;

}

}

The Arakawa C grid defines velocity at different locations than elevation/tracers (i.e. cell faces as
opposed to cell centers). This means that the ul velocity on western edges and u2 velocity on
southern edges actually occupy a land boundary. Since flow is not allowed through the coast,
these cells must be set to zero velocity, i.e. they become the ghost cells for normal velocity
components. On eastern and northern boundaries the normal velocity ghost cells remain the
same as the cell centers. Western and northern edges may be determined on the basis of the
inside cell to a ghost cell mapping to that ghost cell. Therefore, the normal velocity boundary
arrays are constructed from the cell centered boundary arrays thus:

e.g. for el velocity:

cl=1,
for(cc=1; cc<=size(bca); cc++) {
c=bca[cc];
Ic=bin[cc];
if(west_map(lc)==c)
bca_el[cl]=east_mapic];
else
bca_el[cl]=c;
cl++;

}

The velocities tangential to solid boundaries may occupy different locations in the grid than
normal velocities (always at the cell centered ghost cell) and different boundary conditions are
applied to these cells. The boundary arrays for velocity are organized so the first beln cells
contain the normal velocity boundary locations followed by the tangential velocity locations
(Figure 12.9.). Separate vectors are generated for 2D and 3D velocity arrays.

Figure 12.9 : Lateral velocity boundary vector configuration

Normal velocity cells Tangential velocity cells
A AN
-~ ~ ™
Cell 1 beln bptel

Additional arrays may be established to contain sparse locations of open boundary cells, the
sparse cells in each layer, the sparse cells of the free surface, bottom layer or sediment layer, or
any sub-region of the grid that may simplify computations during the integration.
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12.11 Open boundary vectors

The locations of cells on the open boundaries which need to be overwritten at each time-step with
elevation tracer and velocity information are stored in separate vectors. Due to the stagger
imposed by the Arakawa C grid, elevation/tracers, u; and u, velocities on the open boundaries
may occupy different locations in the grid, hence these components each have their own open
boundary vectors.

The open boundary vectors for tracers and elevation are arranged so that the first no2_t cells
contain the surface open boundary locations, followed by no3_t-no2_t sub-surface OBC cells.
The open boundary velocity (obc_el and obc_e?2) are arranged so that the first no2 cells contain
the surface normal velocity locations, followed by no3-no2 sub-surface normal velocity locations.
Following this the surface tangential velocity locations exist, followed by the sub-surface
tangential velocity locations. If the surface layer tangential cells are to be accessed, for example,
the loop would run from no3_el+1 to to2_el. This is illustrated in Figure 12.10. Additional vectors
may be established which contain locations one and two cells interior to the OBC cell, and an
array of locations applicable to cyclic type boundary conditions.

Figure 12.10 : Open boundary vectors for u; velocity
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12.12 Surface and bottom vectors

Vectors may be established which contain the sparse location of the surface cells and the bottom
cells. The sediment cells are then easily identified as the cells beneath the bottom cells. The
surface cells are simply the cells corresponding to the 2D grid, however, these cells may need to
be recalculated at each time-step to allow for movement of the free surface. The bottom cells
have the same size as the surface sparse array, and is simply the sparse location of the bottom
location, kbot[][], for cell centers, e.g.

cl=1,
for(j=0; j<ysize; j++)
for(i=0; i<xsize; i++) {
k = kbot[i][j];
¢ = Mapl[i][j][K];
if(not a solid cell) {
botm[cl] =c;
cl++;
}
}

For velocity, as noted above for the sediment maps, the bottom location may occupy a different
location to the cell center, and the bottom is identified via:

116



SHOC Scientific Manual

cl=1,
for(j=0; j<ysize; j++)
for(i=0; i<xsize; i++)
for(k=0; k<zsize; k++) {
¢ = Map(i][][k];
if(not a solid cell) {
if(cell k==(not a solid face) && cell k-1 == (solid face)) {
botm_el[cl]=c;
cl++;
}
}
}

12.13 Cells to process vectors

The cells that are required to be updated at every time-step are stored in vectors for each
window. Again these vectors differ for ul, u2 velocity and tracer since solid boundaries differ
depending on whether the cell face or center is considered. Once these vectors are established
the domain may be updated without any cell status checking within the code. These vectors are
required for ul, u2 velocity, tracers, ulav, u2av velocity and elevation. This is illustrated in Figure
12.11.

Figure 12.11 : Cells required to be updated (red circles) for tracers, ul and u2
velocity. The black circles correspond to cells which enter the numerical
computations and must assume zero velocity.

u, velocity

The solution of the advection and diffusion equations in flux form requires that fluxes be
calculated at half cell distances (e.g. on the cell faces for cell centered variables). The differences
of these fluxes then yields the updated solution. This means that there must exist a vector of cells
to process for calculating the fluxes and a vector for updating the variable. Generally the cells to
process for fluxes include one extra cell beyond the boundary of the wet domain. If the numerical
technique employed uses a flux form of advection/diffusion schemes, the cells to process vectors
may contain cells depicted in Figure 12.12. The exact format of these vectors is generally
dependent on the type of numerical schemes employed.

Figure 12.12 : Cells to process vectors required for the flux form of advection /
diffusion schemes. Red locations are the cells which are updated, red & white
locations are cells which store fluxes and black locations do not enter the finite
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difference computations and are not required to be included in the cells to
process vectors.

Layer 1 jI Layer 1 Layer 1
[

Tracers : w2_t[ ] us velocity : w2_el[ ] uz velocity : w2_e2[ ]

Rather than create two vectors containing cells to process for fluxes and updates, one vector
exists where a given number of the first consecutive cells corresponds to the wet cells to update
and the entire vector corresponds to the wet cells for fluxes. This amalgamation of the processing
vectors into one vector means that the 2D vectors cannot exist as the first cells in the 3D vectors
and consequently separate processing vectors exist for the 2D variables (e.g. w3_ for 3D
variables, w2_ for 2D variables). The cells to process vectors are organized as illustrated in

Figure 12.13.

Figure 12.13 :Cells to process vectors for 3D variables.
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13. Generating Sparse Windows

In order to facilitate distributed / parallel processing, tune vectorisation and process a domain that
requires more memory than is available, an approach is adopted whereby the full domain is
divided into a number of subsets, or ‘windows’. Each window is sequentially processed (i.e. the
window ‘slides’ over the full domain). The updated state variables resulted from processing each
window are then written to the array containing the state variable at the forward time-step.
Suppose the sparse array of all potentially wet points (global sparse array) is stored in gsa[c].
This vector is subdivided into nw windows, or local arrays, wsa[n,c], each of size naux|n], which
each contain a unique subset of gsa, such that;

gsa[] = nZivlwsa[n][l 13.1

All operations performed on a window are done so with reference to the local sparse coordinates
for that window, i.e. cells numbered from 1 to naux[n]. This means that spatial maps must be
generated which map cells in all directions on the local sparse coordinate system in each window.
These can be easily generated from the global spatial maps once the extent of the window is
known. Near the edges of a window it is possible that some spatial mappings will map to cells in
another window. These extra, or auxiliary cells, must be included in the window. The number of
these auxiliary cells in each window is generally dependent on the order of the advection and
diffusion schemes used. For a second order scheme using the ULTIMATE filter, an extra two
cells beyond the window boundary are required. This is illustrated in Figure 13.1.

Note that semi-Lagrangian schemes are not suitable to use with windows since it is possible for
these schemes to run with Courant numbers of 10 — 20, making it possible for 10 to 20 auxiliary
cells being required. Also, the number of auxiliary cells required is dependent on the flow, making
it necessary for dynamic allocation of auxiliary cells or initially including the maximum number
anticipated. Clearly these requirements lead large operating inefficiencies from a memory
perspective. Inside corner and diagonal ghost cells may be omitted from the window if a semi-
Lagrangian scheme is not used.

Figure 13.1 : Cells required to define a window
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The partitioning into cells into windows may be completely arbitrary, however there are several
considerations that make it advantageous to include all cells in a water column into a window.
This is primarily due to solving the vertical diffusion terms, which are solved implicitly and require
all cells in a water column. The vertical integration of the density gradient for the pressure terms
in the momentum equations also requires all cells to the surface above a given cell. While these
constraints could be accommodated by including all cells in the water column not in the window
as auxiliary cells, to avoid memory related inefficiencies arising from excessive auxiliary cell
specification a restriction is imposed whereby all cells in the entire water column must be included
in a window. Therefore, to specify a window a group of sparse locations in the surface layer is
specified from which the window is generated including all cells from those surface cells to the
bottom cells. Extra auxiliary cells are required for ‘sediment’ cells to specify bottom boundary
conditions.

13.1  Local sparse system and local maps

As with the global sparse system, it is desirable to place all the surface cells in contiguous
locations at the beginning of the local sparse array so that the 2D maps and vectors can be used
as a subset of the 3D. The local sparse system therefore contains all surface wet cells followed
by all surface auxiliary (wet and ghost) and ghost cells, followed by all sub-surface wet cells,
followed by all sub-surface auxiliary (wet and ghost) and ghost cells (see Figure 13.2).

In order to generate the window arrays, a map must first be established which provides the
window number and local window sparse coordinate from any given global sparse coordinate. An
array of data structures is created where for each global coordinate, c;

n = fm[c].wn = window number of sparse coordinate ¢ (range = 1 to wn)
cc = fm[c].sc = local sparse coordinate (range = 1 to naux[n])

With reference to Figure 10, an example of this map may be:

fm[10l.wn =1
fm[10].sc =7
fm[8].sc = 12

Once the global to local map is established, the local sparse system is established in two stages.
First the surface wet and auxiliary cells are identified within the window. Suppose c is the global
sparse coordinate, map(c) is the global sparse coordinate spatial map in any horizontal direction
and nwet2D is the number of surface layer wet cells in the window number n. Wet cells are
initially placed in the first nwet2D locations of the window, followed by auxiliary cells, e.g;

Loop 1
naux2D[n] = nwet2D + 1;
for(cc=1; cc<=naux[n]; cc++) {
¢ = wsaln][cc];
¢l = map(c);
if(c == surface layer cell) {
if(fm(c1l).wn == n)

local_map(cc) = fm(cl).sc /* Local map of cc is in window n */
else {
local_map[cc] = naux2D[n] ; /* Append the auxiliary cell to the end of the 2D wet cells
naux2D[n]++;
}
}
}
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Figure 13.2 : Global to local window maps. The left panel labels sparse
coordinates in the global system, and the right panel has sparse coordinates
labeled in the local system. Note the first 26 locations contain all information
relating to the surface layer.

Global Sparse Array Local Sparse Array

Layer 3

Layer 2

19 121'23
44

Where local_map() is the spatial map in the local sparse system and naux2D[n] is the total
number of surface cells in the window. This procedure effectively defines all the required surface
auxiliary cells via the local spatial maps. Note that map(c) may map further than the nearest
neighbour to a cell. The second stage is to set the local maps for all sub-surface cells and re-
order the global to local map and the local sparse system so that the sequence of cells
corresponds to the numbering depicted in Figure 13.2. The complete re-ordered local sparse
system corresponds to the sequence illustrated in Figure 13.3.
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Figure 13.3 : Re-ordered local sparse system. Note : snonS=ewetS+1 and snon=enonS+1.
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The re-ordering of the global to local map can be accomplished via;

Loop 2
[* First re-order the surface layer cells */
cl=1,
for(cc=1; cc<=nauxs; cc++) {
¢ = wsa2D[n][c];
if(fm[c].wn==n) {
fm[c].sc=c1l;
cl++;
}
}

/* Re-order the sub-surface cells */
c2=1,;
cl =naux2D + 1;
for(cc=1; cc<=naux[n]; cc++) {
¢ = wsa[n][cc];
if(fm[c].wn == n && c = wsa2D[c2]) {
fm[c].sc = c1;
cl++;
c2++;
}
}

where n is the window number, n and wsa2DJcc][n] are the cells in the surface layer of window n
(with a size of naux2D). It is assumed that wsa[][] is filled in the (k,i,j) direction and wsa2D[][] in
the (i,j) direction. The local_map() for the sub-surface cells is established via a loop analogous to
Loop 1 where auxiliary cells are appended to the entire existing local array.

13.2  Cells to process vectors

The cells that are required to be updated at every time-step are stored in vectors for each
window. Again these vectors differ for ul, u2 velocity and tracer since solid boundaries differ
depending on whether the cell face or center is considered. Once these vectors are established
the domain may be updated without any cell status checking within the code. These vectors are
required for ul, u2 velocity, tracers, ulav, u2av velocity and elevation. The solution of the
advection and diffusion equations in flux form requires that fluxes be calculated at half cell
distances (e.g. on the cell faces for cell centered variables). The differences of these fluxes then
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yields the updated solution. This means that there must exist a vector of cells to process for
calculating the fluxes and a vector for updating the variable. Generally the cells to process for
fluxes include one extra cell beyond the boundary of the domain. Rather than create two vectors
containing cells to process for fluxes and updates, one vector exists where a given number of the
first consecutive cells corresponds to the wet cells to update and the entire vector corresponds to
the wet cells for fluxes. This amalgamation of the processing vectors into one vector means that
the 2D vectors cannot exist as the first cells in the 3D vectors and consequently separate
processing vectors exist for the 2D variables. The cells to process vectors are organized as
illustrated in Figure 13.4.

Figure 13.4 : Cells to process vectors

Cell v3 b3 a3 x3 n3

. Auxiliar
Interior wet cells cells y Ghost cells

— —
Open Extra
boundary auxiliary
cells cells

The extra auxiliary cells comprise of southern edge auxiliary cells for ul vectors and western
edge auxiliary cells for u2 velocity required to solve the advection equation for momentum. These
vectors are refined at every time-step to produce vectors of wet cells which exclude those regions
of the domain which may have dried.
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14. Sparse Array Procedures
14.1  Lateral boundary conditions

The sparse array spatial maps and boundary arrays may be used to prescribe lateral boundary
conditions in the domain and perform finite difference operations. The lateral boundary conditions
at the ghost cells must always be set before the relevant parts of the equations of motion are
solved so that the correct boundary condition is prescribed at the land/water interface.

Tracers.
A no-flux lateral boundary condition is achieved by prescribing a no-gradient condition at the
ghost cells, i.e.

for(c=1; c<=num_gc; c++) {
¢l = bcac];
c2 = hin[c];
tracer[cl] = tracer[c2];

}

Velocity.

No-flux conditions normal to the lateral boundaries is achieved by directly setting the velocity on
the boundary to zero. Note that it is assumed the boundary array here corresponds to the
locations of velocity in the grid, which are be offset from the cell center (e.g. on the cell face for an
Arakawa C grid — the vector bpt_el must be used). For the velocity in the x direction, ul, this may
be written.

for(c=1; c<=beln; c++) {
cl = bca_el]c];
ul[cl] =0.0;

}

The tangential velocity is prescribed so that a free-slip condition exists; i.e. a no-gradient
condition is set on the tangential ghost cells:

for(c=beln+1; c<=bptel; c++) {
cl =bpt_el(c);
c2 = bin_el(c);
ul(cl) = ul(c2);

}

14.2  Finite difference operations : example — QUICK  EST in sparse coordinates

The QUICKEST scheme (Quadratic Upstream Interpolation for Convective Kinematics with
Estimated Streaming Term) is a 3" order accurate upwind scheme described by Leonard (1979).
This scheme has very little numerical diffusion and numerical dispersion is limited to one small

ripple in the vicinity of fronts. QUICKEST is stable for q<1. The flux representation of the
QUICKEST scheme is given by:

-I-it+1 :-I-il _(qi+%|:i+% _qi_%Fi_%) 14.1.1

where T is a prognostic tracer, ¢ _, = UAt/AX and ,, = U,,At/AX are the Courant numbers

j+1 i+1
2

on the left and right cell faces respectively. The values Fiy, and Fiy, are the tracer
concentrations at the left and right cell faces where;
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F. = 05(T,, +T.) - 05, (T, ~T.) [ - ¢, JoURV 1412
with:
CURV =T -2T,+T,_, forqg,>0

CURV =T, -2T, +T, for gq_, <0

14.1.3

The finite difference representation of the QUICKEST algorithm in sparse coordinates is
presented in one dimension (x dimension) for brevity. This is easily expanded to full three
dimensions. Using the cells to process vectors described in Section 11.13 (i.e. w3_t for tracers,
w3_el for ul velocity and using the vector fragmentation illustrated in Figure 11.13), and
assuming the lateral boundary conditions have been set, first the Courant numbers are defined
over the whole grid.

In c:

for(cc=1; cc<=n3_t; cc++) {
c=w3_t[cc];
gx[c]=ul[c]*AV/AX[c];
Fx[c]=0.0;

}

where ul is the velocity in the x direction, Fx[c] is the flux through the face corresponding to cell ¢
(remembering that the ul location in the Arakawa C grid is on the face to the west of the cell
center) and and Dx, Dy and Dz are the grid spacings in the X, y and z directions respectively.
Next the tracer concentrations at the cell face is computed.

for(cc=1; cc<=v3_el; cc++) {
c=w3_elJcc];
xpl=xpl[c];
xml=xml[c];
xm2=xml[xm1];

face = 0.5*(T[c]+T[xm1]);
grad = T[c]-T[xm1];
curv = 0.0;
if(gqx[c] > 0.0) {
curv = T[c] — 2*T[xm1] + T[xmZ2];
else if(gx[c] < 0.0)
curv = T[xpl] — 2*T[c] + T[xm1];

Fx[c] = face + 0.5*qgx[c]*grad — (1 — gx[c]*gx[c])*curv/6.0;

[* This is then multiplied by the mass flux through the face to provide the tracer flux */
Fx[c] = ul[c]*Ay[c]*Az|[c];

}

Note that the ul velocity cells to process vector, w3_e1l, is used to get the fluxes over wet cells
only. This improves efficiency by only calculating non-zero fluxes at those cells that will enter into
the finite difference computations. The fluxes at ghost cells (normal velocities at solid boundaries)
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are set to zero due to the zero flux lateral boundary condition. Next the tracer concentration is
updated.

for(cc=1; cc<=v3_t; cc++) {

c=w3_t[cc];

xpl=xpl[c];

T[c] -= (Fx[xpl]-Fx[c])*At/(Ax*Ay*Az);
}
This finite difference representation only performs computations where non-zeroed values of
variables exist with no conditional statements required to examine the land/wet status of a cell,
making for a very efficient algorithm. In F9X this algorithm becomes even more compact, e.g.

! Initialize
Fx=0.0
gx(w3_t)=ul(w3_t) [*AU/AX[w3_t]

! Get the fluxes
Xm2=xml[xm1]
face = 0.5*(T(w3_el)+T(xm1l(w3_el)))
grad = T(w3_el)-T(w3_el(xml))
curv =0.0
where(gx(w3_el) > 0.0)
curv = T(w3_el) — 2*T(xm1(w3_el)) + T(xm2(w3_el))
elsewhere(gx(w3_el) < 0.0)
curv = T(xpl(w3_el)) — 2*T(w3_el) + T(xml(w3_el))
endwhere

Fx[w3_el] = face + 0.5*qx(w3_el)*grad — (1 — gx(w3_el)*qx(w3_el))*curv/6.0

I This is then multiplied by the mass flux through the face to provide the tracer flux */
Fx(w3_el) = ul(w3_el)*Ay(w3_el)*Az(w3_el)

! Update the tracer
T(W3_t) -= (FX(XpL(w3_t))-Fx(W3_t))*At/(AX*Ay*Az)

14.3  Vertical Integration.

The order in which cells are processed in the solutions to the finite difference representations of
the hydrodynamic equations is generally not important. The exception to this is the solution to the
implicit vertical diffusion. These algorithms require sequential access to cells from the surface to
the bottom (and vice versa). Other processes, e.g. calculation of vertical velocity or vertical
integral of pressure, may also benefit from a computational efficiency perspective from
processing in a vertical sequential order. The vertical velocity is retrieved from the continuity
equation.

BV M) 14.2.1

where (u,v,w) are velocities in the (x,y,z) directions respectively. This is typically discretized in flux
form:

w,,, = (W,AxAy — [(uAyAz)X+1 - (uAyAz), + (VAXAZ),, — (vAxAz)y])/ JAV/ANY; 14.2.2

y+1
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where (Ax,Ay,Az) are the grid spacings in the (x,y,z) directions respectively. The subscript x refers
to variables evaluated at cell x and x+1 refers to variables evaluated at the cell xp1[]. Equation
14.2.2 is solved in the sparse system thus:

for(cc=1; cc <=v2_el; cc++) {
¢ = bot_elJcc];
fbot = 0.0;
w[c] = 0.0;
while(c '=w2_el]cc] {
xpl = xpl[c];
ypl =ypl[c];
zpl = zpl[c];

ftop = fbot + ul[c]*Ay*Az - ul[xpl]*Ay*Az + u2[C]*Ax*Az - ul[ypl]*Ax*Az;
w[zp1] = ftop/(Ax *Ay);
fbot = ftop;
c=1zpl;
}
}

here w2_el is the surface cells to process vector for ul velocity (Section 11.13) and bot_e1 holds
the bottom sparse coordinate for ul velocity (Section 11.12). The loop is carried out vertically
from the bottom to the surface. Generally surface and bottom boundary conditions for velocity
need also be applied.
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15. Grid Refinement

Grid refinement, or two-way nesting, allows a fine resolution grid (FRG) to be embedded within a
coarse resolution grid (CRG) so that increased resolution is achievable in a sub-region of the
whole domain. Although the time-step for the simulation is determined by the smallest grid,
savings in computer time is generally achieved by not highly resolving the whole domain. This
practice has been common among atmospheric models for some time (e.g. Zhang et al, 1986,
Clarke and Farley, 1984), and has also been applied to several ocean models (Fox and Maskell,
1995, Kowalik and Murty, 1993, p 147, 201). Grid refinement has been implemented in shoc
using the methodology outlined in Kowalik and Murty (1993) pl149 — 154. This relies on
constructing a grid where the number of fine grid cells that comprise one coarse grid cell (the
zoom factor, zf) is an odd number so that cell faces and centers in the coarse grid are coincident
with fine grid locations at the coarse-fine boundary. As with the distributed processing method, an
overlap zone between coarse and fine grids (auxiliary cells) must be present so that information
can be accessed for finite difference derivatives and averages. The grid arrangement to facilitate
two-way nesting is illustrated in Figure 15.1:

Figure 15.1 : Grid structure for grid refinement
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The grid refinement mapping process is made easier by use of the sparse maps. Separate
windows are established for the FRG and CRG. In the CRG window the maps are reset so that zf
successive mappings occur (e.g. every 3 cells in the example of Figure 15.1). Over coarse-fine
grid boundaries, the CRG will map directly onto a cell in the fine grid, provided the zoom factor is
an odd number (e.g. the coarse grid map arrow in Figure 15.1). The FRG maps remain unaltered.
At coarse-fine grid boundaries the FRG maps will generally map into cells that are not included in
the CRG, and hence are not updated via the equations of motion every time-step (e.g. the
speckled shapes in Figure 15.1.). These cells are prescribed values using bi-linear interpolation
between the closest calculated fine and coarse grid cells. Note that the closest fine and coarse
grid calculated values used in the interpolation depend on whether a cell or face centered
variable is being interpolated. Figure 15.2 illustrates the velocities at cell faces and cell center
locations used in the fine and coarse grids in the bi-linear interpolation. This interpolation takes
place on the master and the interpolated values are transferred to auxiliary cells on the fine grid
window during the master to slave transfers.

Although the CRG face centered velocities are shifted the appropriate distance from the cell
center (i.e. (int)zf / 2 cells), they are actually stored in memory in the CRG window at the same
cell location as the cell center. This simplifies mapping between cells in the coarse grid window,
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but means that during master to salve (and slave to master) transfers, values of velocity must be
taken from the correct wet cell location in the fine/coarse grid and placed in the corresponding
correct auxiliary location in the coarse/fine grid. This is illustrated in Figure 15.3 (a) for fine to
coarse transfers and 15.3 (b) for coarse to fine transfers.

Figure 15.2 : Cell locations used for interpolation. The shapes and colours
correspond to those in the legend of Figure 15.1.
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Figure 15.3 : Velocity transfers between coarse / fine grids
(a) Transfers from fine grid wet cells to coarse grid auxiliary cells
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(b) Transfers from coarse grid wet cells to fine grid auxiliary cells
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Finally the grid spacing, horizontal diffusion and pre-calculated constants must be adjusted in the
coarse grid to account for the larger grid size. Once this is accomplished, the coarse grid
mappings have been re-set and the mater/slave transfer vectors adjusted at the preprocessing
stage, the code can largely proceed with the primitive equation computations with no additional
overhead. However, in order for the code to remain conservative, care must be exercised when
using fluxes at the coarse-fine grid boundary. When a coarse grid cell uses fluxes from auxiliary
cells in the fine grid, the fluxes must be summed over the relevant fine grid faces (Figure 15.4).
When a fine grid cell uses fluxes at interpolated coarse grid auxiliary locations the fluxes must be
consistent in the sense that the vertical integral of the 3D velocity must equal the 2D velocity (i.e.
3D velocities must be adjusted as is done in the main body of the code; velocity adjustment
Figure 3.1). Also surface cell thicknesses must not be interpolated at these cells but rather
computed using the vertical layer heights and the height of the free surface. In order to suppress
short waves in the fine grid unresolved in the coarse grid, which may lead to flow distortion at the
fine-coarse boundary, a horizontal diffusion sponge zone is implemented over the fine-coarse
boundary and fine grid velocities are smoothed with the 9 point Shuman spatial filter (e.g. Kowalik
and Murty (1993), eqn 3.135) before transfer to the coarse grid auxiliary cells.

Figure 15.4 (a) : Fluxes used to calculate cell centered variables (n, T, S) in the
coarse grid at coarse-fine grid boundaries. Large arrows are coarse grid fluxes
and small arrows are fine grid fluxes. The fine grid fluxes in el and e2 directions

are summed.
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Figure 15.4 (b) : Fluxes used to calculate cell centered variables (n, T, S)
in the fine grid at coarse-fine grid boundaries. Solid arrows are fluxes
derived from computed velocities in the fine or coarse grids and speckled
arrows are fluxes derived from interpolated velocities in the coarse grids.
Note a scaled computed flux is used in the coarse grid where fine and
coarse grid velocities are coincident (solid-lined solid arrows). Also, on
front and right coarse-fine boundary edges the fine grid does not use any
values from the coarse grid.
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The cells involved in computing the el velocity at the e2 face and e2 velocity at the el face are
illustrated in Figure 15.5. A flow diagram of how grid-refinement proceeds is presented in Figure

15.5.
Figure 15.5 : Cells involved in velocity averaging (e.g. for Coriolis terms) in the
fine grid. Note the right and back coarse-fine boundary edges the fine grid does
not use any el velocity values from the coarse grid, and the front and left coarse-
fine boundary edges the fine grid does not use any e2 velocity values from the
coarse grid.
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Figure 15.6 : Flow chart of grid refinement processes
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A domain consisting of a closed basin with sloping bottom was constructed and forced with a
constant windstress of 0.1 Nm™. The surface elevation and depth averaged velocity is displayed
in Figure 15.6.

Figure 15.6 : Closed basin solutions with no grid refinement

(o} 0 (¢}
0 5 E 10" E
o 0
6" N 6" N
T S AT vy e R e v P v g
PSR T N
D N N
NN
R R R N R N N N R N N N N N S Y
° e e e N N N N N S N N N N N N N N O O SR o
4" N 50 S0 N0 N0 N0 NA N NE L NI N N0 N N N N N N U U U O O O S R | 4° N
L NN N N N VN U W N O U S O S S
] o D B S R S O N W W W B T B
L S SN T S W T W T
A A A A S B U S S S SR S |
G e e e A e e A A R R T O R A AR
= R o R AR A G O O A I I T B S B B
S S P P I A A B B B N B
o ryry - S e e N N A I N | 0
2°N e : e s i LA 2°N
e P VD Y B N
YN
;;;;;;;; =70
rrrrrrrrrrr A
e e e e
2|
0 (o}
0 ' 0
-1 -
Current 0.1 ms Sea-Level (m)
-::-
0000 11 Jan 2000 +08 -0.09 -0.01 0.07
o o}
2°s 2°S
(o} 0 (¢}
0 5°E 10°E

The center of the domain was then coarsened using a zoom factor of 3, resulting in the grid
illustrated in Figure 15.7 (a). Solutions using this grid refinement configuration are presented in
Figure 15.7 (b). The zoom factor was further increased to 5 (Figure 15.8 (a)) with corresponding
solutions presented in Figure 15.8 (b). The conservation characteristics were analysed by
computing the total heat in the domain for the 10 day simulation. A time series of total heat using
no grid refinement and zoom factors of 3 and 5 is displayed in Figure 15.9 (a) — (c). The series
represents the change in heat content expressed as a percentage of the initial total heat content.
It is observed that conservation characteristics are good with grid refinement invoked, with the
change in heat content less than 0.008% after 10 days. The change in heat content had not
reached a steady state however, as is the case without grid refinement. The change in total
volume after 10 days with a zoom factor of 5 had stabilized at less than 0.0015%.

A similar domain was set up consisting of an open channel with a sloping bottom. The open
boundaries existed at the western and eastern ends of the channel, and all variables were
approximated using cyclic OBC's. A constant alongshore wind of 0.1 Nm™ was applied. This test
case is identical to the test in Section 9.4 of the Users Manual. The results with no grid refinement
and refinement using a zoom factor of 3 are displayed in Figure 15.9.
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Figure 15.7(a) : Closed basin grid with zoom factor = 3

Depth (m)
50 80 110

Figure 15.7 (b) : Closed basin solutions with grid refinement; zoom factor = 3
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Figure 15.8(a) : Closed basin grid with zoom factor = 5
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15.8 (b) : Closed basin solutions with grid refinement; zoom factor =5

o 0 0
0 5°E 10" E
o 0
6°N 6°N
RS v~ vt e e e N NS B EEEEE
S IS R W A A N D A N !
o a S S 0 S0 0 0 N N N N N N N N N N N N S T S S | o
4N L SN N NN N N N N e N e S S N W R A R 4° N
o e N N N N N N N O S
o R S N S N W O O O R S R
Coo D B S S S W T STV S S T e
A S T TR T S T S T S S S O T |
AP AP D A AP D R R S S T S S T S S S S
SRS SR R O I I A A A B A B R B B
R B A A AN A I N N R
o -y SR N I I I R A o
2°N — z el e D A 2°N
i A A |
> > v xs ) f
P =
— s
O
— -
0° 0°
=1 -
Current 0.1 ms Sea-Level (m)
-:-
0000 11 Jan 2000 +08 -0.09 -0.01 0.07
o 0
2°s 2°s
o 0 0
0 5°E 10" E

135



SHOC Scientific Manual

Figure 15.9 (a) : Total heat in the closed basin domain. Units are the change in
total heat content expressed as %.
(a) No grid refinement
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Figure 15.9 (b) : Grid refinement zoom factor = 3
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Figure 15.9 (b) : Grid refinement zoom factor = 5
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Figure 15.9 (a) : Open channel domain with no grid refinement.

6°N

4°N
2°N 55 ESsssesssssss s s ses, EE s sess s S 2°N

0° 0°
Current 0.2 ms™* Sea-Level (m)
0000 11 Jan 2000 +08 -0.3 -0.025 0.25
2°s : 2°s
0° 5°E 10°E

Figure 15.9(b) : Open basin grid with zoom factor = 3
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15.9 (c) : Open basin solutions with grid refinement; zoom factor = 3
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16. Applications.

SHOC has been applied to a variety of aquatic environments ranging from high resolution
riverine/estuarine environments to large scale regional coastal domains. A selection of output
demonstrating SHOC's capabilities are included below.

16.1  Upper Derwent Estuary

The Derwent Estuary bisects the city of Hobart, capital to the state of Tasmania in southern
Australia. This estuary is micro-tidal and extends approximately 60km from the seward end to the
head of the estuary. The object of applying SHOC to the upper regions of the estuary was to
assess the impact of discharge from a pulp mill into the estuary. SHOC generated the circulation
regime on a grid with a resolution from 10m in the cross-river direction to 80m in the along-river
direction. There existed 20 vertical levels in the ‘z’ system. A series of shallow wetlands exists
adjacent to the down-river open boundary which were subject to wetting and drying. Forcing of
the model included tidal and baroclinic forcing at the seaward open boundary, river discharge at
the landward end and time dependent winds. The pulp mill discharge was treated as a point
source.
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Figure 16.1.1 : Salinity and velocity at the down-river boundary. The tide is at the peak flood
phase and generates large currents through the narrow opening at the down-river boundary. The
large flows induce topographic upwelling that leads to higher salinity bottom water breaking the
surface, resulting in the observed large plume of salty water. The inflow also generates an anti-
clockwise eddy in which the high salinity plume is advected, gradually relocating to the southern
side of the estuary as the flood tide weakens.
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Figure 16.1.2 : Cross section of salinity along the deepest part of the river channel. The salt

wedge has attained its equilibrium position, determined by the surface and bottom density

difference at the down-river boundary, the strength of river discharge, the water and pycnocline

depth at the boundary and the strength of the tidal mixing. Internal waves are visible at the fresh /
salt interface with corresponding velocity perturbations.
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Figure 16.1.3 : Concentration of Dissolved Refractory Resin Acid (RDRA) from the pulp mill. The
entire estuary is depicted and the location of the pulp mill is easily identified. RDRA moves down-
river in distinct pulses, dispersing throughout the wetland area at the down-river boundary. This
pulsing effect is the result of pooling of RDRA when the tide opposes the river flow (low velocities
in the vicinity of the outfall lead to higher concentrations) then advection downstream when the
tide ebbs and tidal and river flows combine to create larger velocities.
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16.2 North West Shelf

The continental shelf off north-western Australia (NWS) was modelled in order to derive the
circulation for use in an ecological model. The shelf is wide over this region and is subject to large
semidiurnal tides which induce flow in a predominantly cross-shelf direction. Large internal tides
are also present. The NWS circulation may be influenced by tropical cyclones, the occurrence of
which has the highest frequency along Australia’s coastline (3 - 4 / year). In winter the Leeuwin
Current flows in a poleward direction and is opposed in summer by south-westerly wind driven
circulation. The three open boundaries were forced with surface elevation derived from global
circulation and tide models and temperature / salinity distributions from a global circulation model.
The model is forced with wind data taken from the NCEP-NCAR 40-year Reanalysis data set
(Kalnay et al. 1996). Resolution in the horizontal is 5km with 34 ‘z’ layers having 3m resolution at
the surface. Vertical mixing was parameterised with the k-e scheme.

114°E 116° E 118°E

18°s e 18°s

20°s Gl

. i b ; 20°s
o Ll ;“4, i
\ # \ \ i
///J J‘ ) i J‘ \
' / ;J J KL
/ // J
‘/‘// /f / / Current 1 ms™*
A // / >
e

Sea-Level (m)

N s

-0.7218 0.6771 2.076
0000 10 Jun 1982 +08

22°s ?

114°E 116° E 118°E

Figure 16.2.1 : Surface elevation and currents on the NWS. Note the large gradients of surface
elevation leading to cross-shelf flow.
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Figure 16.2.2 : Density section (cross-shelf along the transect shown in Figure 9.4). Isopycnals
slope downward towards the coast to support the winter Leeuwin Current.
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Figure 16.2.3 : Surface elevation at Port Hedland. Maximum tidal range is almost 8m.
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Figure 16.2.4 : Vertical diffusion coefficient along a cross-shelf section. The large tide generates
vigorous mixing. Inshore there exists overlap of the surface and bottom boundary layers resulting
in a region of strong vertical mixing throughout the whole water column. This is characterised by
very large diffusivities which attain maximum values at mid-depth. The critical value for the
formation of u® fronts is placed at a depth of ~70m (using spring tidal velocities of 0.6 ms™) which
is the approximate limit of large diffusivities above. In reality these fronts never form owing to the
very high stably stratifying influence of incident solar radiation overcoming the vertical mixing
(Tranter and Leech, 1987).
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16.3 D’entrecasteaux Channel

The D’entrecasteaux Channel lies between the southern Tasmanian mainland and Bruny Island
in southern Australia. The Huon Estuary joins the D’entrecasteaux Channel near the southern
limit of the channel and is a significant source of fresh water. The estuary/channel is highly
stratified at times, and also characterised by complex geography, making modelling of the region
challenging. Long period simulations were required (>1 year) to assess the impact of aquaculture
on the aquatic environment, and these simulations required acceptable run time rations (>100:1).
The model was forced with river flow from various sources (the largest being the head of the
Huon Estuary) wind stress and surface elevations, temperature and salinity on the northern and
southern limits of the channel. These northern and southern boundary conditions were derived
from a larger scale model of the region. The period simulated (Feb 1996) included a massive
flood event (maximum flow of 1940 m3s™) which had significant impact on the salinity distribution
throughout the channel. A segment of this flow event is displayed as a time series in Figure
16.3.2 (a) — (j), exhibiting a freshwater plume propagating up the channel to collide with a solid
boundary and subsequently bifurcate.
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Figure 16.3.1 : The curvilinear grid used for the simulations exhibiting a sufficient number of cells
S0 as not compromise resolution whilst maintaining acceptable time-steps and hence run-time
ratios.
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Figure 16.3.2 : Surface salinity distribution as a result of a 1940 m®s™ flow input at the head of the
Huon Estuary. The output interval is 2 hours. The fresh water plume propagates up the channel
favouring the left bank, due to the influence of Coriolis on the baroclinic mode. The plume collides
with the coast at Missionary Bay where it bifurcates, sending one arm westward back into the
channel and the other eastward further around the bay. The currents due to the tide are directed
up the channel during this phase; when the tide turns the plume recedes back down the channel.
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